Detection of Forest Removal in PRODES Mata Atlântica: Discussion on the Transition from Visual to Semiautomatic Interpretation

Conteúdo do artigo principal

Felipe de Oliveira Passos
https://orcid.org/0000-0001-9974-6176
Bruno Vargas Adorno
https://orcid.org/0000-0003-0302-7834
Rodrigo Silva do Carmo
Carla Mourão
Silvana Amaral

Resumo

The Atlantic Forest is a global hotspot rich in biodiversity, but highly threatened by deforestation. The study addresses the PRODES Atlantic Forest monitoring system and its remote sensing techniques, as well as the challenges with the adoption of semi-automatic classification algorithms to process time series of images. We highlight the benefits of transitioning from Landsat series to high spatial resolution Sentinel-2 images, and the combination of Sentinel-2 and Sentinel-1 data to improve visualization in some areas where the landscape is impaired due to clouds. We reviewed existing approaches in the literature for semi-automated deforestation detection, including optical data fusion and SAR, discussing the need to improve the monitoring methodology. We emphasize considering local and seasonal factors to accurately detect the removal of the natural vegetation in the Atlantic Forest and we recommend further testing of algorithms based on time series images. Even though it reveals significant patterns, validation still heavily relies on visual interpretation.

Downloads

Download data is not yet available.

Detalhes do artigo

Seção

Seção Especial "Brazilian Symposium on GeoInformatics - GEOINFO 2023"

Como Citar

PASSOS, Felipe de Oliveira; ADORNO, Bruno Vargas; CARMO, Rodrigo Silva do; MOURÃO, Carla; AMARAL, Silvana. Detection of Forest Removal in PRODES Mata Atlântica: Discussion on the Transition from Visual to Semiautomatic Interpretation. Revista Brasileira de Cartografia, [S. l.], v. 76, n. 0a, 2025. DOI: 10.14393/rbcv77n0a-72619. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/72619. Acesso em: 10 jul. 2025.

Referências

Amaral, S.; Cursino, M. M. S.; Almeida, C. A. MONITORING ATLANTIC FOREST DEFORESTATION BY REMOTE SENSING SYSTEMS. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 2023b. Anais do XX Simpósio Brasileiro de Sensoriamento Remoto [...]. Florianópolis-SC: [s. n.], 2023. p. 1–4.

Andreacci, F.; Marenzi, R. C. Accounting for twenty-first-century annual forest loss in the Atlantic Forest of Brazil using high-resolution global maps. International Journal of Remote Sensing, v. 41, n. 11, p. 4408–4420, 2020.

Assis, L. F. F. G.; Ferreira, K. R.; Vinhas, L.; Maurano, L.; Almeida, C.; Carvalho, A.; Rodrigues, J.; Maciel, A.; Camargo, C. TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping. ISPRS International Journal of Geo-Information, v. 8, n. 11, p. 513, 2019. https://doi.org/10.3390/ijgi8110513.

Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, v. 114, p. 24–31, 2016. https://doi.org/10.1016/j.isprsjprs.2016.01.011.

Braga, C. A. F. Comparação entre métodos de classificação para elaboração de mapas de uso e ocupação da terra do município da Campina do Monte Alegre. 3 feb. 2023. Available at: https://repositorio.ufscar.br/handle/ufscar/17774. Access in: 29 feb. 2024.

Brandt, P.; Hamunyela, E.; Herold, M.; De Bruin, S.; Verbesselt, J.; Rufino, M. C. Sustainable intensification of dairy production can reduce forest disturbance in Kenyan montane forests. Agriculture, Ecosystems & Environment, v. 265, p. 307–319, 2018. https://doi.org/10.1016/j.agee.2018.06.011.

Bullock, E. L.; Woodcock, C. E.; Olofsson, P. Monitoring tropical forest degradation using spectral unmixing and Landsat time series analysis. Remote Sensing of Environment, Time Series Analysis with High Spatial Resolution Imagery. v. 238, p. 110968, 1 mar. 2020. https://doi.org/10.1016/j.rse.2018.11.011.

Campanharo, W. A.; Silva-Junior, C. H. L.; Macul, M. de S.; Ferreira, K. R.; DE Queiroz. Mapeamento de distúrbios florestais no Estado do Maranhão por meio de séries temporais e cubos de dados. In: Simpósio brasileiro de sensoriamento remoto, 20., 2023. Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto [...]. Florianópolis-SC: [s. n.], 2023. v. 20, p. 1816–1819.

CEPF. Mata Atlântica Hotspot de Biodiversidade. [S. l.: s. n.], 2001. Available at: https://www.cepf.net/sites/default/files/atlantic-forest-ecosystem-profile-2001-portuguese.pdf#:~:text=A%20estrat%C3%A9gia%20do%20CEPF%20ser%C3%A1,Gerais%3B%20e%20o%20Corredor%20da. Access in: 29 feb. 2024.

Correia, M. R. D.; Batista, D. C. L. B.; Araujo, R. L. C. Monitoramento do desmatamento nas Terras Indígena do sul do Amazonas: uma abordagem entre a vetorização manual e a classificação automática. 2011. s XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR [...]. Curitiba, PR.: [s. n.], 2011. Available at: http://marte.sid.inpe.br/col/dpi.inpe.br/marte/2011/07.18.17.52/doc/p1568.pdf. Access in: 29 feb. 2024.

Devries, B.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sensing of Environment, v. 169, p. 320–334, 2015. https://doi.org/10.1016/j.rse.2015.08.020.

Drusch, M.; Del bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; Meygret, A.; Spoto, F.; SY, O.; Marchese, F.; Bargellini, P. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, v. 120, p. 25–36, 2012. https://doi.org/10.1016/j.rse.2011.11.026.

Eastman, J.; Sangermano, F.; Machado, E.; Rogan, J.; Anyamba, A. Global Trends in Seasonality of Normalized Difference Vegetation Index (NDVI), 1982–2011. Remote Sensing, v. 5, n. 10, p. 4799–4818, 2013. https://doi.org/10.3390/rs5104799.

Ferrari, F.; Ferreira, M. P.; Almeida, C. A.; Feitosa, R. Q. Fusing Sentinel-1 and Sentinel-2 Images for Deforestation Detection in the Brazilian Amazon Under Diverse Cloud Conditions. IEEE Geoscience and Remote Sensing Letters, v. 20, p. 1–5, 2023. .

Ferreira, K. R.; Queiroz, G. R.; Vinhas, L.; Marujo, R. F. B.; Simoes, R. E. O.; Picoli, M. C. A.; Camara, G.; Cartaxo, R.; Gomes, V. C. F.; Santos, L. A.; Sanchez, A. H.; Arcanjo, J. S.; Fronza, J. G.; Noronha, C. A.; Costa, R. W.; Zaglia, M. C.; Zioti, F.; Korting, T. S.; Soares, A. R.; … Fonseca, L. M. G. Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sensing, v. 12, n. 24, p. 4033, 2020. .

Gamon, J. A.; Field, C. B.; Goulden, M. L.; Griffin, K. L.; Hartley, A. E.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecological Applications, v. 5, n. 1, p. 28–41, 1995. https://doi.org/10.2307/1942049.

Gruber, T.; Willberg, M. Signal and error assessment of GOCE-based high resolution gravity field models. Journal of Geodetic Science, v. 9, n. 1, p. 71–86, 1 jan. 2019. https://doi.org/10.1515/jogs-2019-0008.

Hall, J.; Burgess, N. D.; Lovett, J.; Mbilinyi, B.; Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biological Conservation, v. 142, n. 11, p. 2510–2521, 2009. .

Hamunyela, E.; Reiche, J.; Verbesselt, J.; Herold, M. Using Space-Time Features to Improve Detection of Forest Disturbances from Landsat Time Series. Remote Sensing, v. 9, n. 6, p. 515, 2017. https://doi.org/10.3390/rs9060515.

Hansen, M. C.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T.; Kommareddy, A.; Egorov, A.; Chini, L.; Justice, C. O.; Townshend, J. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science (New York, N.Y.), v. 342, p. 850–853, 15 nov. 2013. https://doi.org/10.1126/science.1244693.

IBGE. Biomas | IBGE. 2020a. Available at: https://www.ibge.gov.br/geociencias/informacoes-ambientais/estudos-ambientais/15842-biomas.html. Access in: 29 feb. 2024.

IBGE. Divulga as Estimativas de População dos municípios para 2018 | Agência de Notícias. 29 ago. 2018. Agência de Notícias - IBGE. Available at: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/22374-ibge-divulga-as-estimativas-de-populacao-dos-municipios-para-2018. Access in: 29 feb. 2024.

IBGE. IBGE retrata cobertura natural dos biomas do país de 2000 a 2018 | Agência de Notícias. 24 set. 2020b. Agência de Notícias - IBGE. Available at: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/28943-ibge-retrata-cobertura-natural-dos-biomas-do-pais-de-2000-a-2018. Access in: 29 feb. 2024.

INPE. Avaliação da acurácia do mapeamento do PRODES 2022 Em. São José dos Campos: INPE, 2022. Available at: http://urlib.net/ibi/8JMKD3MGP3W34T/4AF67C8.

Jackson, Q.; Landgrebe, D. A. An adaptive method for combined covariance estimation and classification. IEEE Transactions on Geoscience and Remote Sensing, v. 40, n. 5, p. 1082–1087, 2002. https://doi.org/10.1109/TGRS.2002.1010895.

Joly, C. A.; Assis, M. A.; Bernacci, L. C.; Tamashiro, J. Y.; Campos, M. C. R. D.; Gomes, J. A. M. A.; Lacerda, M. S.; Santos, F. A. M. D.; Pedroni, F.; Pereira, L. D. S.; Padgurschi, M. D. C. G.; Prata, E. M. B.; Ramos, E.; Torres, R. B.; Rochelle, A.; Martins, F. R.; Alves, L. F.; Vieira, S. A.; Martinelli, L. A.; … Belinello, R. Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica, v. 12, n. 1, p. 125–145, 2012. https://doi.org/10.1590/S1676-06032012000100012.

Lee, S.-H.; Han, K.-J.; Lee, K.; Lee, K.-J.; Oh, K.-Y.; Lee, M.-J. Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques. Remote Sensing, v. 12, n. 20, p. 3372, 2020. https://doi.org/10.3390/rs12203372.

Martins-Neto, R. P.; Tommaselli, A. M. G.; Imai, N. N.; David, H. C.; Miltiadou, M.; Honkavaara, E. Identification of Significative LiDAR Metrics and Comparison of Machine Learning Approaches for Estimating Stand and Diversity Variables in Heterogeneous Brazilian Atlantic Forest. Remote Sensing, v. 13, n. 13, p. 2444, 2021. https://doi.org/10.3390/rs13132444.

Melo, F. P. L.; Pinto, S. R. R.; Brancalion, P. H. S.; Castro, P. S.; Rodrigues, R. R.; Aronson, J.; Tabarelli, M. Priority setting for scaling-up tropical forest restoration projects: Early lessons from the Atlantic Forest Restoration Pact. Environmental Science & Policy, v. 33, p. 395–404, 2013. https://doi.org/10.1016/j.envsci.2013.07.013.

Milodowski, D. T.; Mitchard, E. T. A.; Williams, M. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environmental Research Letters, v. 12, n. 9, p. 094003, 2017b. https://doi.org/10.1088/1748-9326/aa7e1e.

Mittermeier, R.; Gil, P.; Hoffmann, M.; Pilgrim, J.; Brooks, T.; Mittermeier, C.; Lamoreux, J.; Fonseca, G. Hotspots Revisited. Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. [S. l.: s. n.], 2004. v. 392, .

Mittermeier, R.; Turner, W.; Larsen, F.; Brooks, T.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. Biodiversity Hotspots. [S. l.: s. n.], 2011. p. 3–22. https://doi.org/10.1007/978-3-642-20992-5_1.

Molinez, R. Z.; Turibio, A. F.; Carmo, R. S. do; Cursino, M. M. S.; Soler, L. de S.; Amaral, S. Spatial deforestation distribution in the Atlantic Forest biome based on the Brazilian PRODES System. In: Simpósio brasileiro de geoinformática, 24 (GEOINFO), 2023. [S. l.]: Instituto Nacional de Pesquisas Espaciais (INPE), 2023. Available at: http://mtc-m16c.sid.inpe.br/col/sid.inpe.br/mtc-m16c/2023/12.18.13.06/doc/thisInformationItemHomePage.html. Access in: 4 mar. 2024.

Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K. P. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, v. 1, n. 1, p. 6–43, 2013. https://doi.org/10.1109/MGRS.2013.2248301.

Murat Dundar, M.; Landgrebe, D. A model-based mixture-supervised classification approach in hyperspectral data analysis. IEEE Transactions on Geoscience and Remote Sensing, v. 40, n. 12, p. 2692–2699, 2002. https://doi.org/10.1109/TGRS.2002.807010.

Myers, N.; Mittermeier, R. A.; Mittermeier, C. G.; Da Fonseca, G. A. B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 853–858, 2000. https://doi.org/10.1038/35002501.

Passos, F. de O.; Soler, L. S.; Silva, Jadson; Amaral, Silvana. Efeito da resolução espacial sobre a série histórica de monitoramento de desmatamento da mata atlântica. In: Anais do xx simpósio brasileiro de sensoriamento remoto, 20., 2023. Anais do XX Simpósio Brasileiro de Sensoriamento Remoto [...]. Florianópolis-SC: [s. n.], 2023. v. 20, p. 155943.

Pelletier, C.; Webb, G.; Petitjean, F. Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series. Remote Sensing, v. 11, n. 5, p. 523, 2019. https://doi.org/10.3390/rs11050523.

Petitjean, F.; Inglada, J.; Gancarski, P. Satellite Image Time Series Analysis Under Time Warping. IEEE Transactions on Geoscience and Remote Sensing, v. 50, n. 8, p. 3081–3095, 2012. https://doi.org/10.1109/TGRS.2011.2179050.

Picoli, M. C. A.; Simoes, R.; Chaves, M.; Santos, L. A.; Sanchez, A.; Soares, A.; Sanches, I. D.; Ferreira, K. R.; Queiroz, G. R. CBERS DATA CUBE: A POWERFUL TECHNOLOGY FOR MAPPING AND MONITORING BRAZILIAN BIOMES. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. V-3–2020, p. 533–539, 2020. https://doi.org/10.5194/isprs-annals-V-3-2020-533-2020.

Reiche, J.; Souza, C. M.; Hoekman, D. H.; Verbesselt, J.; Persaud, H.; Herold, M. Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 6, n. 5, p. 2159–2173, 2013. https://doi.org/10.1109/JSTARS.2013.2245101.

Romanelli, J. P.; Meli, P.; Santos, J. P. B.; Jacob, I. N.; Souza, L. R.; Rodrigues, A. V.; Trevisan, D. P.; Huang, C.; Almeida, D. R. A.; Silva, L. G. M.; Lopes Assad, M. L. R. C.; Cadotte, M. W.; Rodrigues, R. R. Biodiversity responses to restoration across the Brazilian Atlantic Forest. Science of The Total Environment, v. 821, p. 153403, 2022. .

Schölkopf, B.; Smola, A. J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. [S. l.]: MIT Press, 2002.

Shennan‐Farpón, Y.; Mills, M.; Souza, A.; Homewood, K. The role of agroforestry in restoring Brazil’s Atlantic Forest: Opportunities and challenges for smallholder farmers. People and Nature, v. 4, n. 2, p. 462–480, 2022. https://doi.org/10.1002/pan3.10297.

Shimabukuro, Y. E.; Duarte, V.; Dos Santos, J. R.; Batista, G. T. Mapping and monitoring deforestation areas in Amazon region using semi-automatic classification of Landsat Thematic Mapper images. In: IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the pulse of the planet: The role of remote sensing in managing the environment, 5., 2000. IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120) [...]. Honolulu, HI, USA: IEEE, 2000. v. 5, p. 1999–2001. DOI 10.1109/IGARSS.2000.858226. Available at: http://ieeexplore.ieee.org/document/858226/. Access in: 29 feb. 2024.

Silva, J. L. A.; Souza, A. F.; Vitória, A. P. Mapping functional tree regions of the Atlantic Forest: how much is left and opportunities for conservation. Environmental Conservation, v. 49, n. 3, p. 164–171, 2022. https://doi.org/10.1017/S0376892922000212.

SOS & INPE. Atlas dos remanescentes florestais da Mata Atlântica; período 1995-2000. [S. l.: s. n.], 2002.

SOS Mata Atlântica. Atlas da Mata Atlântica | SOS Mata Atlântica. 2023. Available at: https://www.sosma.org.br/iniciativas/atlas-da-mata-atlantica. Access in: 29 feb. 2024.

Stehman, S. V. Comparing estimators of gross change derived from complete coverage mapping versus statistical sampling of remotely sensed data. Remote Sensing of Environment, v. 96, n. 3–4, p. 466–474, 2005. .

Tardin, A. T.; Santos, A. P. dos; Lee, D. C. L.; Maia, F. C. S.; Mendonça, F. J.; Getúlio V. Assunçao; José E. Rodrigues; Myrian de Moura Abdon; Rene A. Novaes; Sherry Chou Chen; Valdete Duarte; Yosio E. Shimabukuro. Levantamento de áreas de desmatamento na amazônia legal através de imagens do satélite landsat, n. INPE-1411-NTE/142. [S. l.]: INPE, 1979.

Tramontina, J.; Pereira, R. S. Séries temporais de índices de vegetação do sensor modis para detecção de limiares de desmatamento no bioma Mata Atlântica. In: XIX SIMPÓSIO BRASILEIRO DE Sensoriamento Remoto, 2019. Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto [...]. Florianópolis: [s. n.], 2019. p. 2918–2921.

USGS. USGS.gov | Science for a changing world. 2024. https://www.usgs.gov/. Available at: https://www.usgs.gov/. Access in: 1 mar. 2024.

Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, v. 114, n. 1, p. 106–115, 2010. https://doi.org/10.1016/j.rse.2009.08.014.

Wilson, A. M.; Jetz, W. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. PLOS Biology, v. 14, n. 3, p. e1002415, 2016. https://doi.org/10.1371/journal.pbio.1002415.

Wu, C.; Gonsamo, A.; Gough, C. M.; Chen, J. M.; Xu, S. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sensing of Environment, v. 147, p. 79–88, 2014. https://doi.org/10.1016/j.rse.2014.03.001.

Zanotta, D. C.; Sartorio, L. F.; Lemos, A. S.; Machado, E. G.; Dias, F. S. Automatic Methodology for Mass Detection of Past Deforestation in Brazilian Amazon. In: IGARSS 2019 - 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2019. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium [...]. Yokohama, Japan: IEEE, 2019. p. 6610–6613. DOI 10.1109/IGARSS.2019.8898606. Available at: https://ieeexplore.ieee.org/document/8898606/. Access in: 29 feb. 2024.

Zhao, W.; Du, S. Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Transactions on Geoscience and Remote Sensing, v. 54, n. 8, p. 4544–4554, 2016. https://doi.org/10.1109/TGRS.2016.2543748.

Zhong, P.; Wang, R. Learning conditional random fields for classification of hyperspectral images. IEEE transactions on image processing: a publication of the IEEE Signal Processing Society, v. 19, n. 7, p. 1890–1907, 2010. https://doi.org/10.1109/TIP.2010.2045034.

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)