3D Historical Cartography and Virtual Reality: a low-cost methodology

Main Article Content

Bernardo da Cunha Carvalho de Mello
https://orcid.org/0000-0001-9138-8255
Juliana Moulin Fosse
https://orcid.org/0000-0002-4221-781X
Alan José Salomão Graça
https://orcid.org/0000-0002-0580-6746
Luis Augusto Koenig Veiga
https://orcid.org/0000-0003-4026-5372

Abstract

The purpose of this article is to develop a methodological workflow, using low-cost solutions to carry out parametric three-dimensional modeling of buildings and objects belonging to historical-cultural and material heritage. In the context of Historical Cartography, the objective of this work is to promote the dissemination and preservation of Historical Heritage through the use of Virtual Reality, thus providing an interactive, immersive and dynamic approach. As an example, a military building was used, which was built in the 19th century. This building was modeled in 3D based on its original topographic plant and implemented in Virtual Reality for visualization. The applied methodology used cartographic data obtained from the original topographic plant of the building and current scenario photographs, to respectively generate the parametric three-dimensional model and its texturing, in order to resemble the original structure. From the 3D model of the building, a Virtual Reality application was created for the Android system, using the Unity graphics engine and programming tools from the Google API console. The obtained results were adapted for visualization and navigation with the aid of a low-cost virtual reality glasses solution.

Downloads

Download data is not yet available.

Article Details

Section

Cartography and GIS

How to Cite

MELLO, Bernardo da Cunha Carvalho de; FOSSE, Juliana Moulin; GRAÇA, Alan José Salomão; VEIGA, Luis Augusto Koenig. 3D Historical Cartography and Virtual Reality: a low-cost methodology. Brazilian Journal of Cartography, [S. l.], v. 76, n. 0a, 2024. DOI: 10.14393/rbcv76n0a-72594. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/72594. Acesso em: 3 jan. 2026.

References

Ackerman, A., Auwaerter, J., Foulds, E., Page, R., & Robinson, E. (2023). Cultural landscape visu-alization: The use of non-photorealistic 3D rendering as an analytical tool to convey change at Statue of Liberty National Monument. Journal of Cultural Heritage, 62, 396–403.

Bagher, M. M., Sajjadi, P., Wallgrün, J. O., LaFemina, P., & Klippel, A. (2023). Virtual reality for geospatial education: Immersive technologies enhance sense of embodiment. Cartography and Geographic Information Science, 50(3), 233–248.

Balletti, C., & Guerra, F. (2016). Historical maps for 3D digital city's history. Cartographica, 51(3), 115–126.

Botto, M., Federici, B., Ferrando, I., Gagliolo, S., & Sguerso, D. (2023). Innovations in geomatics teaching during the COVID-19 emergency. Applied Geomatics, 15(3), 551–564.

Brito, P. L., Pedreira Junior, J. U., Fernandes, V. O., Viana, M. S., Pedrassoli, J. C., & Delgado, J. M. (2023). Risco dos bairros de Salvador ao espalhamento da COVID-19 decorrente da circula-ção de pessoas e condições socioeconômicas. Revista Brasileira de Geomática, 11(2), 488–500.

Cheng, Y., Zhu, G., Yang, C., Miao, G., & Ge, W. (2022). Characteristics of augmented map re-search from a cartographic perspective. Cartography and Geographic Information Science, 49(5), 426–442.

Chong, H. T., Lim, C. K., Rafi, A., Tan, K. L., & Mokhtar, M. (2022). Comprehensive systematic review on virtual reality for cultural heritage practices: Coherent taxonomy and motivations. Multimedia Systems, 28, 711–726.

Çöltekin, A., Bleisch, S., Andrienko, G., & Dykes, J. (2017). Persistent challenges in geovisualiza-tion – A community perspective. International Journal of Cartography, 3(sup1), 115–139.

Coburn, J. Q., Freeman, I., & Salmon, J. L. (2017). A review of the capabilities of current low-cost virtual reality technology and its potential to enhance the design process. Journal of Computing and Information Science in Engineering, 17(3), 031013.

de Souza, A. F. (1885). Fortificações no Brazil. RIHGB - Revista do Instituto Histórico e Geográfi-co Brasileiro, 48, 5–140.

Döllner, J. (2007). Non-photorealistic 3D geovisualization. In W. Cartwright, M. P. Peterson, & G. Gartner (Eds.), Multimedia cartography (2nd ed., pp. 229–240). Heidelberg: Springer-Verlag.

Dore, C., & Murphy, M. (2012). Integration of Historic Building Information Modeling (HBIM) and 3D GIS for recording and managing cultural heritage sites. In 2012 18th International Con-ference on Virtual Systems and Multimedia (pp. 369–376). IEEE.

Fiorini, G., Friso, I., & Balletti, C. (2022). A geomatic approach to the preservation and 3D com-munication of urban cultural heritage for the history of the city: The journey of Napoleon in Venice. Remote Sensing, 14(14), 3242.

Fosse, J. M., & Veiga, L. A. K. (2006). Representação cartográfica interativa tridimensional: Estu-do da variável visual cor em ambiente VRML. Boletim de Ciências Geodésicas, 12(2), 249–260.

Fritsch, D., & Klein, M. (2017). 3D and 4D modeling for AR and VR app developments. In 2017 23rd International Conference on Virtual System & Multimedia (VSMM) (pp. 1–8). IEEE.

Gaberli, Ü. (2022). Cultural tourism, internet of things, and smart technologies in museums. In L. Oliveira (Ed.), Handbook of research on digital communications, internet of things, and the fu-ture of cultural tourism (pp. 260–270). Hershey: IGI Global.

Gatta, G., Arioti, E., & Bitelli, G. (2017). Geomatics science applied to cartographic heritage and archive sources: A new way to explore the XIXth century Gregorian Cadastre of Bologna (Italy), an ante-litteram 3D GIS. Journal of Cultural Heritage, 23, 68–76.

Gavette, P., & Page-Schmit, K. (2018). Utilizing historic cartography in 3D for archaeological prospection on Alcatraz. In 2018 3rd Digital Heritage International Congress (DigitalHERIT-AGE) held jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018) (pp. 1–4). IEEE.

Graça, A. J. S., Fosse, J. M., Veiga, L. A. K., & Botelho, M. F. (2021). A impressão 3D no âmbito das representações cartográficas. Revista Brasileira de Cartografia, 73(3), 809–826.

Günay, S. (2019). Geographical information systems as a tool for 3D visualization of lost architec-tural heritage. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 69–75.

Hajek, P., Jedlička, K., Vichrová, M., & Fiala, R. (2013). Conceptual approach of information rich 3D model about the Terezín Memorial. Geoinformatics FCE CTU, 11, 49–62.

Halik, Ł. (2012). The analysis of visual variables for use in the cartographic design of point sym-bols for mobile augmented reality applications. Geodesy and Cartography, 61(1), 19–30.

Herman, L., Kvarda, O., & Stachoň, Z. (2018). Cheap and immersive virtual reality: Application in cartography. The International Archives of the Photogrammetry, Remote Sensing and Spatial In-formation Sciences, 42, 261–266.

Janovský, M., Tobiáš, P., & Cehák, V. (2022). 3D visualization of the historic pre-dam Vltava River Valley—Procedural and CAD modelling, online publishing and virtual reality. ISPRS In-ternational Journal of Geo-Information, 11(7), 376.

Kessler, F. C., & Battersby, S. E. (2019). Working with map projections: A guide to their selection. Boca Raton: CRC Press.

Kanchana, J., & Sindhya, S. (2021). Development of virtual reality application for centrifugal pump impeller–machining process for training purpose. International Journal of Nonlinear Analysis and Applications, 12, 1855–1862.

Lafreniere, D., & Rivet, D. (2010). Rescaling the past through mosaic historical cartography. Jour-nal of Maps, 6(1), 417–422.

Limberger, D., Scheibel, W., Döllner, J., & Trapp, M. (2023). Visual variables and configuration of software maps. Journal of Visualization, 26(1), 249–274.

Luo, L., Wang, X., Guo, H., Lasaponara, R., Shi, P., Bachagha, N., Li, L., Yao, Y., Masini, N., Chen, F., Ji, W., Cao, H., Li, C., & Hu, N. (2018). Google Earth as a powerful tool for archaeo-logical and cultural heritage applications: A review. Remote Sensing, 10(10), 1558.

Lyra, L. F. A. (2019). Artilharia de costa: A evolução bélica em prol da defesa do litoral brasilei-ro. Biblioteca do Exército Brasileiro.

Marques, M. S. (2001). Cartografia antiga: Tabela de equivalências de medidas; cálculo de esca-las e conversão de valores de coordenadas geográficas. Lisboa: Biblioteca Nacional de Lisboa.

Mello, C. P. de. (2018). Encaminhamento de ficha de registro do Sitio Arqueológico do Forte de Coroa Grande. Rio de Janeiro: Instituto do Patrimônio Histórico e Artístico Nacional (IPHAN).

Montello, D. R. (2009). Cognitive research in GIScience: Recent achievements and future pro-spects. Geography Compass, 3(5), 1824–1840.

Morlighem, C., Labetski, A., & Ledoux, H. (2022). Reconstructing historical 3D city models. Ur-ban Informatics, 1(1), 11.

Nascimento, M. L. F. (2020). A multivariate analysis on spatiotemporal evolution of COVID-19 deaths in Brazilian states and cities. Remote Sensing Applications: Society and Environment, 19, 100392.

Nascimento, R. (2019). Uma análise cartográfica dos mapas de tratamento de esgoto do Brasil no Censo 2010. Cadernos Metrópole, 21(45), 753–773.

Ndiweni, J., & Sundaram, D. (2022). Utilising virtual reality for teaching rural spatial data. Car-tography and Geographic Information Science, 49(5), 424–444.

Oliveira, L., & Santos, A. (2022). Metodologia de monitoramento para auxílio a políticas públicas para eventos climáticos extremos no Brasil. UFES.

Oliveira, R. B. de. (2015). Cartografia e Geotecnologias Aplicadas à Defesa Civil. Editora da UFRJ.

Ono, M. M. (2009). A tridimensionalidade na representação cartográfica. Revista Brasileira de Cartografia, 61(1), 7–16.

Pimenta, V. S., Lopes, A. S., Lopes, C. M., & Demétrio, V. A. (2022). Virtual urbanism as tool for urban planning studies: Case study applied to Rio de Janeiro State, Brazil. Landscape Research, 47(7), 937–957.

Porciani, M., Botto, M., & Federici, B. (2021). A systematic literature review of geographic infor-mation system applications for epidemiology during the COVID-19 pandemic. International Journal of Environmental Research and Public Health, 18(17), 9114.

Salman, J. L., & Paul, R. J. (2017). Evaluating the feasibility of low-cost virtual reality and its applicability to early-stage design. The Design Journal, 20(sup1), S1575–S1587.

Schiewe, J. (2017). Cross-references between geovisualization and virtual reality techniques for cartographic applications. The Cartographic Journal, 54(1), 1–2.

Siva, M., Erol, K., & Kilic, M. (2013). Thematic and temporal documentation of historical urban information systems based on BIM-GIS integration. Advances in Civil Engineering, 2013, 563792.

Tedesco, R. (2022). Teaching topography and cartography: Challenges and innovations in the COVID-19 pandemic context. Revista Brasileira de Educação em Geografia, 11(1), 1–10.

Valença, M. T. (2019). A evolução dos sistemas de georeferenciamento da costa brasileira. Editora UFPE.

Veiga, L. A. K., Borges, E. A. M., & Lima, F. S. (2017). Cartografia e Geotecnologias Aplicadas a Gestão Ambiental. Editora UFPI.

Viera, S. (2018). Prospecção arqueológica de fortificações coloniais brasileiras no uso de geotec-nologias. Editora da UFRJ.

Visockiene, J., Nikiforov, A., & Greinert, A. (2023). Multi-scale analysis of European landscapes using open-source geospatial tools. Land, 12(1), 176.

Wang, R., Li, X., & Zhang, L. (2018). A 3D geovisualization-based spatiotemporal analysis of historical evolution for urban planning. Journal of Urban Technology, 25(2), 3–21.

Weber, M., & Kadziolka, M. (2023). Using virtual reality for training landscape planners. Journal of Digital Landscape Architecture, 8, 205–214.

Wu, S., Ma, X., Huang, J., & Zhou, Z. (2022). A GIS-based modeling approach to assess COVID-19 containment strategies: An empirical study in Wuhan, China. Environment, Development and Sustainability, 24(1), 461–483.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>