Subpixel Analysis of MODIS Imagery Time Series using Transfer Learning and Relative Calibration

Main Article Content

Noeli Aline Particcelli Moreira
Emiliano Ferreira Castejon

Abstract

Transfer learning reuses a pre-trained model on a new related problem, which can be useful for monitoring large areas such as the Amazon biome. A given object must have similar spectral characteristics in the data used for this type of analysis, which can be achieved using relative calibration techniques. In this article, we present a relative calibration process in multitemporal images and evaluate its impacts on a subpixel classification process. MODIS images from the Amazon region, collected between 2013 and 2017, were relatively calibrated using a 2012 image as reference and classified by transfer learning. Classifications of calibrated and uncalibrated images were compared with data from the PRODES project, focusing on forest areas. A great variation was observed in the spectral responses of the forest class, even in images of proximate dates and from the same sensor. These variations significantly impacted the land cover classifications in the subpixel, with cases of agreement between the uncalibrated data maps and PRODES of 0%. For calibrated data, the agreement values ​​were greater than 70%. The results indicate that the method used, although quite simple, is adequate and necessary for the subpixel classification of MODIS images by transfer learning.

Downloads

Download data is not yet available.

Article Details

Section

Special Section "Brazilian Symposium on GeoInformatics"

How to Cite

MOREIRA, Noeli Aline Particcelli; REIS, Mariane Souza; KÖRTING, Thales Sehn; DUTRA, Luciano Vieira; CASTEJON, Emiliano Ferreira; ARAI, Egidio. Subpixel Analysis of MODIS Imagery Time Series using Transfer Learning and Relative Calibration. Brazilian Journal of Cartography, [S. l.], v. 72, n. 4, p. 558–573, 2020. DOI: 10.14393/rbcv72n4-54044. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/54044. Acesso em: 7 dec. 2025.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 4 > >>