Uncovering Shifting Cultivation Dynamics in the Amazon: the Synergy Between Field Dataand Remote Sensing Image Time Series Classificationme Series Classification
Main Article Content
Abstract
This study evaluates the Compound Maximum a posteriori (CMAP) classification of Landsat imagery to reconstruct the land-use history of shifting cultivation areas across the Amazon. We estimated agricultural cycles and secondary forest age near the Juruá, Tefé, and Tapajós rivers using annual Landsat composites (1984–2024) classified with CMAP and a generalized training strategy. Comparison with local landowner interviews showed that CMAP effectively estimates these parameters (55% within ±1 for cycles and 93% within ±3 years for age). These results demonstrate CMAP’s potential for land-use history reconstruction, with field data integration likely improving the detailing of information.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see "The Effect of Open Access").
How to Cite
References
Abrell, T., Naudin, K., Bianchi, F. J., Aragao, D. V., Tittonell, P., & Corbeels, M. (2024). Shiftingccultivation in decline: An analysis of soil fertility and weed pressure in intensified cropping systems in Eastern Amazon. Agriculture, Ecosystems & Environment, 360, 108793. https://doi.org/https://doi.org/10.1016/j.agee.2023.108793
Affonso, A. G., Escada, M. I. S., Amaral, S., Souza, A. R., Siqueira, J. M., Torres, N. C., Camilotti, V. L.,Dal’Asta, A. P., Costa, L. C. O., & Soares, F. d. R. (2016). As comunidades ribeirinhas do Baixo Tapajós (PA): infraestrutura, mobilidade, serviços sócio ambientais e conectividade (RPQ N. INPE-17756-RPQ/920). Instituto Nacional de Pesquisas Espaciais. São José dos Campos. http://urlib.net/rep/8JMKD3MGP3W34P/3M7C69L
lmeida, C. A., Perez, L. P., Reis, M. S., Camilotti, V. L., Messias, C. G., Monteiro, E. C. S., Pinheiro,T. F., Pinto, J. F. S. K. C., Soler, L. S., Vinhas, L., Maurano, L. E. P., Adami, M., Kuplich, T. M., Narvaes, I. S., Arcoverde, G. F. B., & Amaral, S. (2025). Monitoramento oficial da vegetação nativa brasileira por imagens de satélite: o programa BiomasBR e os sistemas Prodes, Deter e TerraClass. Cadernos de Astronomia, 6(1), 23–38. https://doi.org/10.47456/Cad.Astro.v6n1. 47411
Carreiras, J. M., Jones, J., Lucas, R. M., & Shimabukuro, Y. E. (2017). Mapping major land cover types and retrieving the age of secondary forests in the Brazilian Amazon by combining single-date optical and radar remote sensing data. Remote Sensing of Environment, 194, 16–32. https://doi.org/https://doi.org/10.1016/j.rse.2017.03.016
Denevan, W. M., Padoch, C., Prance, G. T., Treacy, J. M., Unruh, J., Alcorn, J. B., Paitán, S. F., Inuma, J. C., & de Jong, W. (1988). Swidden-Fallow Agroforestry in the Peruvian Amazon. Advances in Economic Botany, 5, i–107.
Doblas, J., Reis, M. S., Mermoz, S., Almeida, C. A., Koleck, T., Messias, C. G., Soler, L., Bouvet, A., & Sant’Anna, S. J. S. (2024). DETER-RT: The new INPE-TropiSCO deforestation monitoring system in the Amazon biome. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-3-2024, 127–133. https://doi.org/10.5194/isprsarchives- XLVIII-3-2024-127-2024
Dutrieux, L. P., Jakovac, C. C., Latifah, S. H., & Kooistra, L. (2016). Reconstructing land use history from Landsat time-series: Case study of a swidden agriculture system in Brazil. International Journal of Applied Earth Observation and Geoinformation, 47, 112–124. https://doi.org/https://doi.org/10.1016/j.jag.2015.11.018
Jakovac, C. C., Bongers, F., Kuyper, T. W., Mesquita, R. C., & Peña-Claros, M. (2016a). Land use as a filter for species composition in Amazonian secondary forests. Journal of Vegetation Science, 27(6), 1104–1116. https://doi.org/https://doi.org/10.1111/jvs.12457
Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., & Bongers, F. (2015). Loss of secondary-forest resilience by land-use intensification in the Amazon. Journal of Ecology, 103(1), 67–77.
Jakovac, C. C., Peña-Claros, M., Mesquita, R. C., Bongers, F., & Kuyper, T.W. (2016b). Swiddens under transition: Consequences of agricultural intensification in the Amazon. Agriculture, Ecosystems & Environment, 218, 116–125. https://doi.org/https://doi.org/10.1016/j.agee.2015.11.013
Jakovac, C. C., Peña-Claros, M., Mesquita, R. C., Bongers, F., & Kuyper, T.W. (2016c). Swiddens under
transition: Consequences of agricultural intensification in the Amazon. Agriculture, Ecosystems & Environment, 218, 116–125. https://doi.org/https://doi.org/10.1016/j.agee.2015.11.013
Jakovac, C. C., Dutrieux, L. P., Siti, L., Peña-Claros, M., & Bongers, F. (2017). Spatial and temporal dynamics of shifting cultivation in the middle-Amazonas river: expansion and intensification. PloS One, 12(7), e0181092.
Lawrence, D., Peart, D. R., & Leighton, M. (1998). The impact of shifting cultivation on a rainforest landscape in West Kalimantan: spatial and temporal dynamics. Landscape Ecology, 13, 135–148.
Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401. https://doi.org/10.1080/0143116031000139863
NASA. (2023). Landsat Science. https://landsat.gsfc.nasa.gov/
Padoch, C., & Pinedo-Vasquez, M. (2010). Saving Slash-and-Burn to Save Biodiversity. Biotropica, 42(5), 550–552. https://doi.org/https://doi.org/10.1111/j.1744-7429.2010.00681.x
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S.,
Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M.,
Durán, S. M., . . . Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211–214. https://doi.org/10.1038/nature16512
Quevedo, R. P., Maciel, D. A., Reis, M. S., Rennó, C. D., Dutra, L. V., de Oliveira Andrades-Filho, C., Velástegui-Montoya, A., Zhang, T., Körting, T. S., & Anderson, L. O. (2024). Land use and land cover changes without invalid transitions: A case study in a landslide-affected area. Remote Sensing Applications: Society and Environment, 36, 101314. https://doi.org/https://doi.org/10.1016/j.rsase.2024.101314
Reis, M. S. (2022). Detection and analysis of forest regeneration trajectories in the Lower Tapajós
region [tese de dout., National Institute for Space Research (INPE)]. http://urlib.net/ibi/8JMKD3MGP3W34T/47E2TRB
Reis, M. S., Escada, M. I. S., San’Anna, S. J. S., & Dutra, L. V. (2020a). Métodos de Classificação e Análise de Trajetórias de Uso e Cobertura da Terra na Amazônia: Implicações para Estudos de Regeneração Florestal. Revista Brasileira de Cartografia, 72(esp.), 1087–1113. https://doi.org/10.14393/rbcv72nespecial50anos-56535
Reis, M. S., de Barros, L. S., Neto, M. R. R., de Moraes, D. R. V., Moreira, N. A. P., Alves, G. M. R., Adorno, B. V., Messias, C. G., Dutra, L. V., Rennó, C. D., Sant’Anna, S. J. S., & Escada, M. I. S. (2024). Assessing interpreter’s disagreements in land cover reference data collection from historical Landsat time series in Amazon. International Journal of Remote Sensing, 45(15), 5192–5223. https://doi.org/10.1080/01431161.2024.2373340
Reis, M. S., Dutra, L. V., Escada, M. I. S., & Sant’anna, S. J. S. (2020b). Avoiding Invalid Transition in Land Cover Trajectory Classification With a Compound Maximum a Posteriori Approach. IEEE Access, 8, 98787–98799. https://doi.org/10.1109/ACCESS.2020.2997019
Reis, M. S., Dutra, L. V., Sant’Anna, S. J. S., & Escada, M. I. S. (2018). Análise das incertezas envolvidas em classificação multi-legendas da cobertura da terra com suporte de simulação Monte Carlo. Revista Brasileira de Cartografia, 69(9), 1847–1863.
Reis, M. S., Rodrigues, E. T., Gomes, E., Mantovani-Silva, E., Giles, A., Réquillart, J., Escada, M. I. S., & Jakovac, C. (2025). Retrieval of land-use history in shifting cultivation systems in the Amazon: the synergy between field data and Landsat time series classification. Em C. Davis &R. D. C. Santos (Ed.), Anais... Instituto Nacional de Pesquisas Espaciais (INPE).
Restrepo-Coupe, N., Rocha, H. R., Hutyra, L. R., Araujo, A. C., Borma, L. S., Christoffersen, B., Cabral, O. M., Camargo, P. B., Cardoso, F. L., Costa, A. C. L., Fitzjarrald, D. R., Goulden, M. L., Kruijt, B., Maia, J. M., Malhi, Y. S., Manzi, A. O., Miller, S. D., Nobre, A. D., von Randow, C., . . . Saleska, S. R. (2013). What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182-183, 128–144. https://doi.org/https://doi.org/10.1016/j.agrformet.2013.04.031
Rufin, P., Meyfroidt, P., Akinyemi, F. O., Estes, L., Ibrahim, E. S., Jain, M., Kerner, H., Lisboa,S. N., Lobell, D., Nakalembe, C., Persello, C., Picoli, M. C. A., Ribeiro, N., Sitoe, A. A., Waha, K., & Wang, S. (2025). To enhance sustainable development goal research, open up commercial satellite image archives. Proceedings of the National Academy of Sciences, 122(7), e2410246122.
Sant’Anna, S. J. S., Braga, B. C., Oliveira, J. M., Oliveira, M. A. F., Reis, M. S., Moreira, N. A. P., & Albuquerque, P. C. G. (2016). Field data from the Tapajós region - August-September of 2016. Schmidt, M.V. C., Ikpeng,Y.U., Kayabi, T., Sanches, R. A., Ono, K.Y.,&Adams, C. (2021). Indigenous Knowledge and Forest Succession Management in the Brazilian Amazon: Contributions to Reforestation of Degraded Areas. Frontiers in Forests and Global Change, 4. https//doi.org/10.3389/ffgc.2021.605925
Souza, C. M., Z. Shimbo, J., Rosa, M. R., Parente, L. L., A. Alencar, A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W. M., de Oliveira, S.W., Rocha,W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., . . . Azevedo, T. (2020). Reconstructing Three Decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sensing, 12(17), 2735. Steininger, M. K. (2000). Secondary forest structure and biomass following short and extended land-use in central and southern Amazonia. Journal of Tropical Ecology, 689–708.
Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition (4ª ed.). Academic Press.
Wulder, M. A., Coops, N. C., Roy, D. P., White, J. C., & Hermosilla, T. (2018). Land cover 2.0. International Journal of Remote Sensing, 39(12), 4254–4284. https://doi.org/10.1080/01431161.2018.1452075
Zhu, Z. (2017). Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370–384. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2017.06.013