Two-dimensional, three-dimensional and n-dimensional Mersenne relations
DOI:
https://doi.org/10.14393/BEJOM-v4-2023-69300Keywords:
Mersenne Sequence, Two-dimensional relationships, Three-dimensional relationships, n-dimensional relationsAbstract
The Mersenne sequence, named in honor of the French mathematician Marin Mersenne, is a second-order recursive progression represented by a one-dimensional model, and its numbers can also be described in the form Mn=2n-1. This research aims to explore and investigate the recurring relationships in two-dimensional (M(n,m)), three-dimensional (M(n,m,p)), and n-dimensional (M(n1, n2, n3, ... ,nt)) spaces based on the one-dimensional model Mn+1 = 3Mn - 2Mn-1, where n is a non-negative integer, and the initial values are set as M0 = 0 and M1 = 1. The evolution of the sequence is examined along with its process of complexification. Throughout this analysis, mathematical properties of these number relations are identified, emphasizing the dimensional expansion of the sequence and the inclusion of imaginary units i, j, ... , µn, culminating in the generalization of n-dimensional relationships.
Downloads
References
ALVES, F. R. V.; CATARINO, P.; MANGUEIRA, M. Discovering theorems about the Gaussian Mersenne sequence with the Maples help. Annals. Computer Science Series, v. XVII fasc. 1, 2019.
ALVES, F. R. V.; et. al. Teaching recurrent sequences in Brazil using historical facts and graphical illustrations. Acta Didactica Napocensia, v. 13, n. 1, p. 87-104, 2020.
ALVES, F. R. V. Bivariate Mersenne polynomials and matrices. Notes on Number Theory and Discrete Mathematics, v. 26, n. 3, 83-95, 2020.
CATARINO, P.; CAMPOS, H.; VASCO, P. On the Mersenne sequence. Annales Mathematicae et Informaticae, v. 46, p. 37-53, 2016.
HARMAN, C. J. Complex Fibonacci numbers. The Fibonacci Quarterly, v. 19, n.1, p. 82-86, 1981.
KOSHY, T.; GAO, Z. Catalan numbers with Mersenne subscripts. Math. Scientist, v. 38, n. 2, p. 86-91, 2013.
MANGUEIRA, M. C. dos S.; VIEIRA, R. P. M.; ALVES, F. R. V.; CATARINO, P. M. M. C. As generalizações das formas matriciais e dos quatérnios da sequência de Mersenne. Revista de Matemática de Ouro Preto, v. 1, n. 1, 1-17, 2021.
OLIVEIRA, R. R. de. Engenharia Didática sobre o Modelo de Complexificação da Sequência Generalizada de Fibonacci: Relações Recorrentes n-dimensionais e Representações Polinomiais e Matriciais. Dissertação de Mestrado Acadêmico em Ensino de Ciências e Matemática - Instituto Federal de Educação, Ciência e Tecnologia do Estado do Ceará (IFCE), 2018.
OLIVEIRA, R. R. de; ALVES, F. R. V.; PAIVA, R. E. B. Identidades bi e tridimensionais para os números de Fibonacci na forma complexa. C.Q.D.-Revista Eletrônica Paulista de Matemática, Bauru, v. 11, n. 2, p. 91-106, 2017.
VIEIRA, R. P. M.; ALVES, F. R. V.; CATARINO, P. M. M. C. Relações bidimensionais e identidades da sequência de Leonardo. Revista Sergipana de Matemática e Educação Matemática, v. 4, n. 2, p. 156-173, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Milena Carolina dos Santos Mangueira, Renata Passos Machado Vieira, Francisco Régis Vieira Alves, Paula Maria Machado Cruz Catarino, Roger Oliveira Sousa Sousa
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The published articles are licensed under the CreativeCommons CCBY-NC/4.0 version. By submitting the material for publication, the authors automatically waive their copyright, agree to the editorial guidelines of the journal, and assume that the text has been properly reviewed. Simultaneous submission of articles to other journals is prohibited, as is the translation of articles published in the journal into another language without proper authorization.