Uso do Sensoriamento Remoto na Análise de Qualidade e Identificação de Defeitos em Pavimentos Flexíveis: Uma Revisão Sistemática
Conteúdo do artigo principal
Resumo
O sensoriamento remoto tem se mostrado como ferramenta promissora para avaliação de pavimentos flexíveis, complementando métodos tradicionais de inspeção. Esta revisão sistemática analisa técnicas como LiDAR e imageamento multiespectral, destacando sua eficácia na detecção de deformações, trincas e outros defeitos superficiais. Plataformas aéreas (VANTs) apresentam bom desempenho para inspeções pontuais, enquanto sistemas veiculares com LiDAR são mais adequados para avaliação contínua de redes extensas. Apesar dos avanços, persistem desafios, como necessidade de maior resolução espacial para microfissuras, influência de condições ambientais e altos requisitos computacionais. Soluções emergentes envolvendo fusão de dados multissensores e inteligência artificial mostram potencial para superar essas limitações, embora a padronização metodológica e validação conforme normas técnicas permaneçam como aspectos a serem melhorados para adoção em larga escala. O estudo conclui que o sensoriamento remoto já oferece benefícios concretos para gestão de infraestrutura rodoviária, com perspectivas de transformar os processos de monitoramento e manutenção viária.
Downloads
Detalhes do artigo
Seção

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Como Citar
Referências
Al-Arkawazi, S. A. F. (2017). Flexible Pavement Evaluation: A Case Study. Kurdistan Journal of Applied Research, 2(3), 292–301. https://doi.org/10.24017/SCIENCE.2017.3.33.
Amhaz, R., Chambon, S., Idier, J., & Baltazart, V. (2014). A new minimal path selection algorithm for automatic crack detection on pavement images. 2014 IEEE International Conference on Image Processing, ICIP 2014, 788–792. https://doi.org/10.1109/ICIP.2014.7025158.
Andreou, C., Karathanassi, V., & Kolokoussis, P. (2011). Investigation of hyperspectral remote sensing for mapping asphalt road conditions. International Journal of Remote Sensing, 32(21), 6315–6333. https://doi.org/10.1080/01431161.2010.508799.
ASTM - American Society for Testing and Materials. (2024). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. ASTM International. https://doi.org/10.1520/D6433-24.
ASTM - American Society for Testing and Materials. (2025, junho 1). Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys. ASTM International. https://doi.org/10.1520/D6433-20.
Avila, M., Begot, S., Duculty, F., & Nguyen, T. S. (2014). 2D image based road pavement crack detection by calculating minimal paths and dynamic programming. 2014 IEEE International Conference on Image Processing, ICIP 2014, 783–787. https://doi.org/10.1109/ICIP.2014.7025157.
Bernucci, L. B., Motta, L. M. G. da, Ceratti, J. A. P., & Soares, J. B. (2022). Pavimentação asfáltica: Formação básica para engenheiros (2o ed). PETROBRAS: ABEDA.
Brewer, E., Lin, J., Kemper, P., Hennin, J., & Runfola, D. (2021). Predicting road quality using high resolution satellite imagery: A transfer learning approach. PLOS ONE, 16(7), e0253370. https://doi.org/10.1371/JOURNAL.PONE.0253370.
Chambon, S., Gourraud, C., Moliard, J. M., & Nicolle, P. (2011). Road crack extraction with adapted filtering and Markov model-based segmentation : introduction and validation. https://hal.science/hal-00612537.
Chen, X., & Li, J. (2016). A FEASIBILITY STUDY ON USE OF GENERIC MOBILE LASER SCANNING SYSTEM FOR DETECTING ASPHALT PAVEMENT CRACKS. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B1, 545–549. https://doi.org/10.5194/ISPRS-ARCHIVES-XLI-B1-545-2016.
CNT - Confederação Nacional de Transportes. (2017, agosto 30). Brasil tem método antigo para dimensionar o pavimento. https://cnt.org.br/agencia-cnt/brasil-tem-metodo-antigo-para-dimensionar-o-pavimento.
CNT - Confederação Nacional do Transporte. (2018, fevereiro 8). Conheça os 13 principais defeitos do pavimento das rodovias. https://www.cnt.org.br/agencia-cnt/conheca-principais-defeitos-pavimento.
CNT - Confederação Nacional do Transporte. (2022). Anuário CNT do Transporte: Estatísticas Consolidadas.
Cord, A., & Chambon, S. (2011). Automatic Road Defect Detection by Textural Pattern Recognition Based on AdaBoost. Computer-Aided Civil and Infrastructure Engineering, 27(4), 16p. https://doi.org/10.1111/J.1467-8667.2011.00736.X.
del Río-Barral, P., Soilán, M., González-Collazo, S. M., & Arias, P. (2022). Pavement Crack Detection and Clustering via Region-Growing Algorithm from 3D MLS Point Clouds. Remote Sensing 2022, Vol. 14, Page 5866, 14(22), 5866. https://doi.org/10.3390/RS14225866.
Díaz-Vilariño, L., González-Jorge, H., Bueno, M., Arias, P., & Puente, I. (2016). Automatic classification of urban pavements using mobile LiDAR data and roughness descriptors. Construction and Building Materials, 102, 208–215. https://doi.org/10.1016/J.CONBUILDMAT.2015.10.199.
DNIT - Departamento Nacional de Infraestrutura de Transportes. (2003a). DNIT 005/2003 - TER - Defeitos nos pavimentos flexíveis e semi-rígidos Terminologia.
DNIT - Departamento Nacional de Infraestrutura de Transportes. (2003b). DNIT 006/2003 - PRO - Avaliação objetiva da superfície de pavimentos flexíveis e semi-rígidos - Procedimento.
DNIT - Departamento Nacional de Infraestrutura de Transportes. (2003c). DNIT 007/2003-PRO - Levantamento para avaliação da condição de superfície de subtrecho homogêneo de rodovias de pavimentos flexíveis e semi-rígidos para gerência de pavimentos e estudos e projetos Procedimento.
DNIT - Departamento Nacional de Infraestrutura de Transportes. (2003d). DNIT 008/2003 - PRO - Levantamento visual contínuo para avaliação da superfície de pavimentos flexíveis e semi-rígidos - Procedimento (p. 11).
DNIT - Departamento Nacional de Infraestrutura de Transportes. (2011). MANUAL DE GERÊNCIA DE PAVIMENTOS . https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-manuais/vigentes/745_manual_de_gerencia_de_pavimentos.pdf.
Dong, P., & Chen, Q. (2018). LiDAR remote sensing and applications. Em Annals of GIS (1o ed, Vol. 1, Número 3). CRC Press. https://doi.org/10.1080/19475683.2018.1471522.
Dong, Q., Wang, S., Chen, X., Jiang, W., Li, R., & Gu, X. (2023). Pavement crack detection based on point cloud data and data fusion. Philosophical Transactions of the Royal Society A, 381(2254). https://doi.org/10.1098/RSTA.2022.0165.
Elamin, A., & El-Rabbany, A. (2023). UAV-Based Image and LiDAR Fusion for Pavement Crack Segmentation. Sensors, 23(23), 9315. https://doi.org/10.3390/S23239315.
Faisal, A., & Gargoum, S. (2023). Automated Assessment of Pavement Rutting Using Mobile LiDAR Data. TAC Conference & Exhibition, 1–22. https://www.tac-atc.ca/wp-content/uploads/automated_assessment_of_pavement_rutting_0.pdf.
Federal Highway Administration. (2014). Distress Identification Manual for the Long-Term Pavement Performance Program.
Feng, H., Li, W., Luo, Z., Chen, Y., Fatholahi, S. N., Cheng, M., Wang, C., Junior, J. M., & Li, J. (2021). GCN-Based Pavement Crack Detection Using Mobile LiDAR Point Clouds. IEEE Transactions on Intelligent Transportation Systems, 23(8), 11558–0016. https://doi.org/10.1109/TITS.2021.3099023.
Feng, H., Ma, L., Yu, Y., Chen, Y., & Li, J. (2023). SCL-GCN: Stratified Contrastive Learning Graph Convolution Network for pavement crack detection from mobile LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, 118, 103248. https://doi.org/10.1016/J.JAG.2023.103248.
Feng, Z., El Issaoui, A., Lehtomäki, M., Ingman, M., Kaartinen, H., Kukko, A., Savela, J., Hyyppä, H., & Hyyppä, J. (2022). Pavement distress detection using terrestrial laser scanning point clouds – Accuracy evaluation and algorithm comparison. ISPRS Open Journal of Photogrammetry and Remote Sensing, 3, 100010. https://doi.org/10.1016/J.OPHOTO.2021.100010.
Flores, D. M., Romero, J. P. R., Nuñez, C. A. C., Flores, N. V., & Santos, A. C. P. dos. (2025). Aplicação da aerofotogrametria com VANT para análise de pavimentação asfáltica. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, 18(2), e15841–e15841. https://doi.org/10.55905/REVCONV.18N.2-379.
Freitas, G. T. de M., & Nobre, E. F. J. (2020). Identificação de patologias em pavimentos rodoviários utilizando inteligência artificial. 34o Congresso de Pesquisa e Ensino em Transporte da ANPET, 831–834. http://repositorio.ufc.br/handle/riufc/56725.
Governo do Estado do Paraná. (2024). Projeto executivo de engenharia para restauração e ampliação de capacidade da rodovia PR-170/prc-466, iniciando na rodovia PR-460, a aproximadamente 01 km do entroncamento com a PR-460 e PR-239, em pitanga, e finalizando no km 220, no início do perímetro urbano de Turvo, no estado do Paraná, na extensão estimada de 45,50 km-lote 01. https://www.der.pr.gov.br/sites/der/arquivos_restritos/files/documento/2024-02/PRC466lote1_Volume1_RelatoriodoProjeto.pdf.
Grandsaert, P. (2015). Integrating Pavement Crack Detection and Analysis Using Autonomous Unmanned Aerial Vehicle Imagery. Theses and Dissertations. https://scholar.afit.edu/etd/147.
Haas, R., Hudson, W. R., & Zaniewski, J. (1994). Modern Pavement Management (1o ed, Vol. 1). Krieger Pub Co.
Hoang, N. D., & Nguyen, Q. L. (2018). Automatic Recognition of Asphalt Pavement Cracks Based on Image Processing and Machine Learning Approaches: A Comparative Study on Classifier Performance. Mathematical Problems in Engineering, 2018(1), 6290498. https://doi.org/10.1155/2018/6290498.
Huang, J., Liu, W., & Sun, X. (2013). A Pavement Crack Detection Method Combining 2D with 3D Information Based on Dempster-Shafer Theory. Computer-Aided Civil and Infrastructure Engineering, 29(4), 299–313. https://doi.org/10.1111/MICE.12041.
Kang, B. H., & Choi, S. Il. (2017). Pothole detection system using 2D LiDAR and camera. International Conference on Ubiquitous and Future Networks, ICUFN, 744–746. https://doi.org/10.1109/ICUFN.2017.7993890.
Khan, N. H. R., & Kumar, S. V. (2024). Terrestrial LiDAR derived 3D point cloud model, digital elevation model (DEM) and hillshade map for identification and evaluation of pavement distresses. Results in Engineering, 23, 102680. https://doi.org/10.1016/J.RINENG.2024.102680.
Kim, J., Park, B. J., Roh, C. G., & Kim, Y. (2021). Performance of Mobile LiDAR in Real Road Driving Conditions. Sensors 2021, Vol. 21, Page 7461, 21(22), 7461. https://doi.org/10.3390/S21227461.
Laurent, J., Talbot, M., & Doucet, M. (1997). Road surface inspection using laser scanners adapted for the high precision 3D measurements of large flat surfaces. Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, 303–310. https://doi.org/10.1109/IM.1997.603880.
Lázaro, B. D. O., Chuerubim, M. L., Ribeiro, R. L., Almeida, Y. M. De, & Tristão, M. V. D. O. (2022). Avaliação das condições de superfície de pavimentos urbanos com o auxílio de ferramentas de análise espacial. Transportes, 30(1), 2539–2539. https://doi.org/10.14295/TRANSPORTES.V30I1.2539.
Liu, Z., Wu, W., Gu, X., Li, S., Wang, L., & Zhang, T. (2021). Application of Combining YOLO Models and 3D GPR Images in Road Detection and Maintenance. Remote Sensing, 13(6), 1081. https://doi.org/10.3390/RS13061081.
Llopis-Castelló, D., García-Segura, T., Montalbán-Domingo, L., Sanz-Benlloch, A., & Pellicer, E. (2020). Influence of Pavement Structure, Traffic, and Weather on Urban Flexible Pavement Deterioration. Sustainability, 12(22), 9717. https://doi.org/10.3390/SU12229717.
Ma, L., & Li, J. (2022). SD-GCN: Saliency-based dilated graph convolution network for pavement crack extraction from 3D point clouds. International Journal of Applied Earth Observation and Geoinformation, 111, 102836. https://doi.org/10.1016/J.JAG.2022.102836.
Matarneh, S., Elghaish, F., Al-Ghraibah, A., Abdellatef, E., & Edwards, D. J. (2023). An automatic image processing based on Hough transform algorithm for pavement crack detection and classification. Smart and Sustainable Built Environment, ahead-of-print(ahead-of-print). https://doi.org/10.1108/SASBE-01-2023-0004/FULL/PDF.
Mettas, C., Agapiou, A., Themistocleous, K., Neocleous, K., & Hadjimitsis, D. G. (2016). Detection of asphalt pavement cracks using remote sensing techniques. https://doi.org/10.1117/12.2240682, 10008, 269–277. https://doi.org/10.1117/12.2240682.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical research ed.), 339(7716), 332–336. https://doi.org/10.1136/BMJ.B2535.
Mukti, S. N. A., & Tahar, K. N. (2021). Low altitude multispectral mapping for road defect detection. Geografia-Malaysian Journal of Society and Space, 17(2), 102–115. https://doi.org/10.17576/geo-2021-1702-09.
Nunes-Ramos, V., Trevisan, E. V., Specht, L. P., Pereira, D. da S., & Bueno, L. D. (2024). Distress Manifestation in Asphalt Pavements: Comparison between Local and Unmanned Aerial Vehicle (UAV) Measurements. Anuário do Instituto de Geociências, 47. https://doi.org/10.11137/1982-3908_2024_47_64125.
Oliveira, H., & Correia, P. L. (2009, agosto). Automatic road crack segmentation using entropy and image dynamic thresholding. 17th European Signal Processing Conference. https://ieeexplore.ieee.org/abstract/document/7077805.
Pan, Y., Zhang, X., Cervone, G., & Yang, L. (2018). Detection of Asphalt Pavement Potholes and Cracks Based on the Unmanned Aerial Vehicle Multispectral Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3701–3712. https://doi.org/10.1109/JSTARS.2018.2865528.
Pan, Y., Zhang, X., Sun, M., & Zhao, Q. (2017). Object-Based and Supervised Detection of Potholes and Cracks from the Pavement Images Acquired by Uav. https://doi.org/10.5194/isprs-archives-XLII-4-W4-209-2017.
Ravi, R., Bullock, D., & Habib, A. (2020a). Highway And Airport Runway Pavement Inspection Using Mobile LiDAR. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2020(B1), 349–354. https://doi.org/10.5194/ISPRS-ARCHIVES-XLIII-B1-2020-349-2020.
Ravi, R., Habib, A., & Bullock, D. (2020b). Pothole mapping and patching quantity estimates using lidar-based mobile mapping systems. Transportation Research Record, 2674(9), 124–134. https://doi.org/10.1177/0361198120927006/ASSET/IMAGES/LARGE/10.1177_0361198120927006-FIG6.JPEG.
Resende, M. R., Bernucci, L. L. B., & Quintanilha, J. A. (2012). Classificação híbrida: pixel a pixel e baseada em objetos para o monitoramento da condição da superfície dos pavimentos rodoviários. Boletim de Ciências Geodésicas, 18(3), 397–420. https://doi.org/10.1590/S1982-21702012000300004.
Ritchie, S. G. (1987). Expert systems in pavement management. Transportation Research Part A: General, 21(2), 145–152. https://doi.org/10.1016/0191-2607(87)90007-0.
Safaei, N., Smadi, O., Masoud, A., & Safaei, B. (2022). An Automatic Image Processing Algorithm Based on Crack Pixel Density for Pavement Crack Detection and Classification. International Journal of Pavement Research and Technology, 15(1), 159–172. https://doi.org/10.1007/S42947-021-00006-4/METRICS.
Sanches, I., Galvão, L. S., & Adami, M. (2025). Sensores ópticos hiperespectrais. http://www.dsr.inpe.br/DSR/areas-de-atuacao/sensores-plataformas/sensores-opticos-hiperespectrais.
Shatnawi, N., Obaidat, M. T., & Al-Mistarehi, B. (2021). Road pavement rut detection using mobile and static terrestrial laser scanning. Applied Geomatics, 13(4), 901–911. https://doi.org/10.1007/S12518-021-00400-4/FIGURES/11.
SHRP– STRATEGIC HIGHWAY RESEARCH PROGRAM. (1993). Distress Identification Manual for the Long-Term Pavement Performance Project.
Tan, Y., Deng, T., Zhou, J., & Zhou, Z. (2024). LiDAR-Based Automatic Pavement Distress Detection and Management Using Deep Learning and BIM. Journal of Construction Engineering and Management, 150(7), 04024069. https://doi.org/10.1061/JCEMD4.COENG-14358/ASSET/7BB76856-02C9-40A0-8DEE-FA85AED677E1/ASSETS/IMAGES/LARGE/FIGURE18.JPG.
Tran, V. Q., To, P. A. T., Huynh, T. N., & Phan, A. T. T. (2021). Detection of Asphalt Pavement Cracks using mobile 2D laser scanning system: A case study of UTM 30LX laser scanner. Journal of Physics: Conference Series, 1793(1), 012038. https://doi.org/10.1088/1742-6596/1793/1/012038.
Ukhwah, E. N., Yuniarno, E. M., & Suprapto, Y. K. (2019). Asphalt Pavement Pothole Detection using Deep learning method based on YOLO Neural Network. 2019 International Seminar on Intelligent Technology and Its Application, ISITIA 2019, 35–40. https://doi.org/10.1109/ISITIA.2019.8937176.
UK National Highways. (2021). CD 226 - Design for new pavement construction. https://www.standardsforhighways.co.uk/search/9654b4de-efa7-4843-8598-295019387077.
Vaaja, M., Maksimainen, M., Virtanen, J.-P., Kukko, A., Lehtola, V., Hyyppä, J., & Hyyppä, H. (2018). Mobile mapping of night-time road environment lighting conditions. The Photogrammetric Journal of Finland, 26(1), 1–17. https://doi.org/10.17690/018261.1.
Vieira, S. A., Júnior, A. A. E. de P., Oliveira, F. H. L. de, & Aguiar, M. F. P. de. (2016). ANÁLISE COMPARATIVA DE METODOLOGIAS DE AVALIAÇÃO DE PAVIMENTOS ATRAVÉS DO IGG E PCI. Conexões - Ciência e Tecnologia, 10(3), 20–30. https://doi.org/10.21439/CONEXOES.V10I3.799.
Zhang, D., Zou, Q., Lin, H., Xu, X., He, L., Gui, R., & Li, Q. (2018). Automatic pavement defect detection using 3D laser profiling technology. Automation in Construction, 96, 350–365. https://doi.org/10.1016/J.AUTCON.2018.09.019.
Zhang, M., Xiao, R., Ma, Y., Jiang, X., Andrzej Polaczyk, P., & Huang, B. (2023). Evaluating structural characteristics of asphalt pavements by using deflection slopes from traffic speed deflectometer. Construction and Building Materials, 365, 130052. https://doi.org/10.1016/J.CONBUILDMAT.2022.130052.
Zhang, X., Wang, Q., Fang, H., & Ying, G. (2025). Automatic settlement assessment of urban road from 3D terrestrial laser scan data. Journal of Infrastructure Intelligence and Resilience, 4(1), 100142. https://doi.org/10.1016/J.IINTEL.2025.100142.
Zhang, Y., Chen, J., Wu, Z., Guo, X., & Jia, S. (2024). Optimizing Pavement Distress Detection with UAV: A Comparative Study of Vision Transformer and Convolutional Neural Networks. KSCE Journal of Civil Engineering, 100095. https://doi.org/10.1016/J.KSCEJ.2024.100095.
Zhong, M., Sui, L., Wang, Z., & Hu, D. (2020). Pavement Crack Detection from Mobile Laser Scanning Point Clouds Using a Time Grid. Sensors 2020, Vol. 20, Page 4198, 20(15), 4198. https://doi.org/10.3390/S20154198.
Zhu, J., Gao, Y., Huang, S., Bu, T., & Jiang, S. (2023). Measuring Surface Deformation of Asphalt Pavement via Airborne LiDAR: A Pilot Study. Drones, 7(9), 570. https://doi.org/10.3390/DRONES7090570.