Generation of a Digital Terrain Model (DTM) Fusioning WV-2 Images and RTK-derived Topobathymetric Data

Conteúdo do artigo principal

Elton Vicente Escobar Silva
https://orcid.org/0000-0002-9437-9351
Cláudia Maria de Almeida
https://orcid.org/0000-0002-6523-3169
Rômulo Marques-Carvalho
https://orcid.org/0000-0002-9232-9043
João Vitor Roque Guerrero
https://orcid.org/0000-0002-5393-3803
Cleber Gonzales de Oliveira
https://orcid.org/0000-0003-4733-3462

Resumo

Digital terrain models (DTMs) are digital elevation models (DEMs) that represent the bare ground surface. They are created by multiple sources, including satellite remote sensing, aerial photography, and ground-based surveys, and are often combined with other data sources to create highly detailed models. As the demand for accurate and detailed information about the Earth's surface continues to grow, DTMs have become an increasingly important tool for researchers in different fields. This study aims to create a DTM with a spatial resolution of 0.50 m for São Caetano do Sul, São Paulo, Brazil, integrated with a topobathymetric map of three water courses running along the borders of the study area. For the conventional DTM generation, a WV-2 stereo pair was used. A total of 55 ground control points (GCPs) were collected using the GNSS-RTK method, being 60% used for model building and 40% employed for validation. The topobathymetric survey was accomplished using a GNSS-RTK device placed along the analyzed open streams. For validation purposes, we used bias and MAE metrics. Overall, the methodology presented in this article provides a useful approach for generating high-resolution DTMs that can be used in a range of applications, especially in urban hydrodynamic studies.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
ESCOBAR SILVA, E. V.; ALMEIDA, C. M. de; MARQUES-CARVALHO, R.; GUERRERO, J. V. R.; OLIVEIRA, C. G. de. Generation of a Digital Terrain Model (DTM) Fusioning WV-2 Images and RTK-derived Topobathymetric Data. Revista Brasileira de Cartografia, [S. l.], v. 76, 2024. DOI: 10.14393/rbcv76n0a-70372. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/70372. Acesso em: 21 dez. 2024.
Seção
Sensoriamento Remoto

Referências

AGUILAR, M. A.; NEMMAOUI, A.; AGUILAR, F. J.; QIN, R. Quality assessment of digital surface models extracted from WorldView-2 and WorldView-3 stereo pairs over different land covers. GIScience & Remote Sensing, v. 56, n. 1, p. 109–129, 2019. DOI: 10.1080/15481603.2018.1494408.

BECK, H. E.; ZIMMERMANN, N. E.; MCVICAR, T. R.; et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, v. 5, n. 1, p. 180214, 2018. DOI: 10.1038/sdata.2018.214.

CARVALHO, R. M.; ALMEIDA, C. M. DE; ESCOBAR-SILVA, E. V.; ALVES, R. B. DE O.; LACERDA, C. S. DOS A. Simulation and Prediction of Urban Land Use Change Using 2 Markov Chain and Bayesian Inference by Means of Random 3 Change Allocation Algorithms. Remote Sensing, 2022. DOI: 10.3390/rs15010090.

CINTRA, J. P.; NERO, M. A.; RODRIGUES, D. GNSS/NTRIP service and technique: accuracy tests. Boletim de Ciências Geodésicas, v. 17, n. 2, p. 257–271, 2011. DOI: 10.1590/S1982-21702011000200006.

CLIMATE-DATA.ORG. Climate São Caetano do Sul. Available at <https://en.climate-data.org/south-america/brazil/sao-paulo/sao-caetano-do-sul-9603/>. Accessed on 31 Jan. 2023.

CRONEBORG, L.; SAITO, K.; MATERA, M.; MCKEOWN, D.; VAN AARDT, J. Digital Elevation Models. World Bank, Washington, DC, 2020.

ESA. About WorldView-2. Available at <https://www.eoportal.org/satellite-missions/worldview-2>. Accessed on 15 Aug. 2022.

FEWTRELL, T. J.; DUNCAN, A.; SAMPSON, C. C.; NEAL, J. C.; BATES, P. D. Benchmarking urban flood models of varying complexity and scale using high resolution terrestrial LiDAR data. Physics and Chemistry of the Earth, Parts A/B/C, v. 36, n. 7–8, p. 281–291, 2011. DOI: 10.1016/j.pce.2010.12.011.

FISHER, P. F.; TATE, N. J. Causes and consequences of error in digital elevation models. Progress in Physical Geography: Earth and Environment, v. 30, n. 4, p. 467–489, 2006. DOI: 10.1191/0309133306pp4.

FU, C. Y.; TSAY, J. R. STATISTIC TESTS AIDED MULTI-SOURCE DEM FUSION. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XLI-B6, p. 227–233, 2016.

GAMBA, P.; DELL ACQUA, F.; HOUSHMAND, B. SRTM data characterization in urban areas. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, v. 34, n. (3/B), p. 55–58, 2002.

GROHMANN, C. H. Effects of spatial resolution on slope and aspect derivation for regional-scale analysis. Computers & Geosciences, v. 77, p. 111–117, 2015.

GUTH, P. L.; VAN NIEKERK, A.; GROHMANN, C. H.; et al. Digital elevation models: Terminology and definitions. Remote Sensing, v. 13, n. 18, p. 1–19, 2021. DOI: 10.1016/j.cageo.2015.02.003.

HENGL, T.; EVANS, I. S. Chapter 2 Mathematical and Digital Models of the Land Surface. p.31–63, 2009. DOI: 10.1016/S0166-2481(08)00002-0.

HUISING, E. J.; GOMES PEREIRA, L. M. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS Journal of Photogrammetry and Remote Sensing, v. 53, n. 5, p. 245–261, 1998. DOI: 10.1016/S0924-2716(98)00013-6.

IBGE, Instituto Brasileiro de Geografia e Estatística. Gross Internal Product of the Brazil’s municipalities 2018 ('Produto interno bruto dos municípios 2018’). Rio de Janeiro: Coordenação de Contas Nacionais, 2020. Available at <https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9088-produto-interno-bruto-dos-municipios.html>. Accessed on 12 Feb. 2023.

IBGE, Instituto Brasileiro de Geografia e Estatística. Cities and states ('Cidades e estados’): São Caetano do Sul, 2023. Available at <https://cidades.ibge.gov.br/brasil/sp/sao-caetano-do-sul/panorama>. Accessed on 12 Feb. 2023.

ICS. Sustainable Cities Development Index: Brazil ('Índice de Desenvolvimento Sustentável das Cidades: Brasil’), 2022. ICS - Instituto Cidades Sustentáveis (Institute Sustainable Cities). Available at <https://idsc.cidadessustentaveis.org.br/rankings>. Accessed on 31 Jan. 2023.

LIU, Y.; BATES, P. D.; NEAL, J. C.; YAMAZAKI, D. Bare‐Earth DEM Generation in Urban Areas for Flood Inundation Simulation Using Global Digital Elevation Models. Water Resources Research, v. 57, n. 4, 2021. DOI: 10.1029/2020WR028516.

MAUNE, D. F.; HEIDEMANN, H. K.; KOPP, S. M.; CRAWFORD, C. A. Introduction to DEMs. In: D. F. Maune; A. Nayegandhi (Orgs.); Digital elevation model. Technologies and applications: The DEM user’s manual. 3rd edition ed., 2018.

MESA-MINGORANCE, J. L.; ARIZA-LÓPEZ, F. J. Accuracy Assessment of Digital Elevation Models (DEMs): A Critical Review of Practices of the Past Three Decades. Remote Sensing, v. 12, n. 16, p. 2630, 2020. DOI: 10.3390/rs12162630.

MUGNIER, C.; FÖRSTNER, W.; WROBEL, B.; PADERES, F.; MUNJY, R. The Mathematics of Photogrammetry. In: J. C. McGlone (Org.); Manual of photogrammetry. 6th ed ed., 2013. American Society for Photogrammetry and Remote Sensing (ASPRS).

NASA. U.S. Releases Enhanced Shuttle Land Elevation Data. Available at <https://www2.jpl.nasa.gov/srtm/>. Accessed on 8 Aug. 2022.

NEMMAOUI, A.; AGUILAR, F. J.; AGUILAR, M. A.; QIN, R. DSM and DTM generation from VHR satellite stereo imagery over plastic covered greenhouse areas. Computers and Electronics in Agriculture, v. 164, p. 104903, 2019. DOI: 10.1016/j.compag.2019.104903.

NOVOA, J.; CHOKMANI, K.; NIGEL, R.; DUFOUR, P. Quality assessment from a hydrological perspective of a digital elevation model derived from WorldView-2 remote sensing data. Hydrological Sciences Journal, v. 60, n. 2, p. 218–233, 2015. DOI: 10.1080/02626667.2013.875179.

ORLANDI, A. G.; CARVALHO JÚNIOR, O. A. DE; GUIMARÃES, R. F.; BIAS, E. S.; Corrêa, D. C.; GOMES, R. A. T.; Vertical accuracy assessment of the processed SRTM data for the Brazilian territory. Boletim de Ciências Geodésicas, v. 25, n. 4, 2019. DOI: 10.1590/s1982-21702019000400021.

PCI GEOMATICS. Catalyst Profession - User’s Guide. Chapter 6: Generating digital elevation models. 2022. Ontario, Canada.

QIN, R. A critical analysis of satellite stereo pairs for digital surface model generation and a matching quality prediction model. ISPRS Journal of Photogrammetry and Remote Sensing, v. 154, p. 139–150, 2019. DOI: 10.1016/j.isprsjprs.2019.06.005.

RODRÍGUEZ, E.; MORRIS, C. S.; BELZ, J. E. A Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing, v. 72, n. 3, p. 249–260, 2006. DOI: 10.14358/PERS.72.3.249.

ROMANHOLI, M. P.; LEAL, C.; TELLES, S. S. DE S.; SANTOS, C. DOS; REDIVO, I. A. C. Mapping Analysis Report of State of São Paulo 1:25,000 (Relatório de Análise do Mapeamento do Estado de São Paulo 1:25.000). (R. Duarte, Org.), 2015. Instituto Geográfico e Cartográfico – IGC.

SEEGERS, B. N.; STUMPF, R. P.; SCHAEFFER, B. A.; LOFTIN, K. A.; WERDELL, P. J. Performance metrics for the assessment of satellite data products: an ocean color case study. Optics Express, v. 26, n. 6, p. 7404, 2018. DOI: 10.1364/OE.26.007404.

SHAKER, A.; YAN, W. Y.; EASA, S. Using Stereo Satellite Imagery for Topographic and Transportation Applications: An Accuracy Assessment. GIScience & Remote Sensing, v. 47, n. 3, p. 321–337, 2010. DOI: 10.2747/1548-1603.47.3.321.

SHORTRIDGE, A. Shuttle Radar Topography Mission Elevation Data Error and Its Relationship to Land Cover. Cartography and Geographic Information Science, v. 33, n. 1, p. 65–75, 2006. DOI: 10.1559/152304006777323172.

TEUNISSEN, P. J. G.; ODOLINSKI, R.; ODIJK, D. Instantaneous BeiDou+GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy, v. 88, n. 4, p. 335–350, 2014. DOI: 10.1007/s00190-013-0686-4.

USGS, United States Geological Survey. Standards for digital elevation models. Reston, VA, 1986.

VILLASENOR ALVA, J. A.; ESTRADA, E. G. A Generalization of Shapiro–Wilk’s Test for Multivariate Normality. Communications in Statistics - Theory and Methods, v. 38, n. 11, p. 1870–1883, 2009. DOI: 10.1080/03610920802474465.

WALTHER, B. A.; MOORE, J. L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, v. 28, n. 6, p. 815–829, 2005. DOI: 10.1111/j.2005.0906-7590.04112.x.

WEATHERALL, P.; MARKS, K. M.; JAKOBSSON, M.; et al. A new digital bathymetric model of the world’s oceans. Earth and Space Science, v. 2, n. 8, p. 331–345, 2015. DOI: 10.1002/2015EA000107.

WECHSLER, S. P.; KROLL, C. N. Quantifying DEM Uncertainty and its Effect on Topographic Parameters. Photogrammetric Engineering & Remote Sensing, v. 72, n. 9, p. 1081–1090, 2006. DOI: 10.14358/PERS.72.9.1081.

WEYDAHL, D. J.; SAGSTUEN, J.; DICK, Ø. B.; RØNNING, H. SRTM DEM accuracy assessment over vegetated areas in Norway. International Journal of Remote Sensing, v. 28, n. 16, p. 3513–3527, 2007. DOI: 10.1080/01431160600993447.

WÖLFL, A.-C.; SNAITH, H.; AMIREBRAHIMI, S.; et al. Seafloor Mapping – The Challenge of a Truly Global Ocean Bathymetry. Frontiers in Marine Science, v. 6, n. 283, p. 16, 2019. DOI: 10.3389/fmars.2019.00283.

ZAZO, S.; MOLINA, J.-L.; RODRÍGUEZ-GONZÁLVEZ, P. Analysis of flood modeling through innovative geomatic methods. Journal of Hydrology, v. 524, p. 522–537, 2015. DOI 10.1016/j.jhydrol.2015.03.011.

ZHOU, Y.; PARSONS, B.; ELLIOTT, J. R.; BARISIN, I.; WALKER, R. T. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor‐Cucapah epicentral area. Journal of Geophysical Research: Solid Earth, v. 120, n. 12, p. 8793–8808, 2015. DOI: 10.1002/2015JB012358.

Artigos mais lidos pelo mesmo(s) autor(es)