Avaliação da Infraestrutura Cicloviária e Interpolação Espacial de seus Indicadores de Qualidade: uma Abordagem Baseada em Análise Hierárquica e Geoestatística

Conteúdo do artigo principal

Wellington de Aquino Traldi
https://orcid.org/0000-0003-2471-5732
Samuel de França Marques
https://orcid.org/0000-0001-5602-3277
Cira Souza Pitombo
https://orcid.org/0000-0001-9864-3175
Pablo Brilhante de Sousa
https://orcid.org/0000-0002-2526-3312
Ricardo Almeida de Melo
https://orcid.org/0000-0001-8993-5264

Resumo

O presente artigo tem dois objetivos associados: (1) avaliar a qualidade da infraestrutura cicloviária no município de João Pessoa (PB) através de Processo de Análise Hierárquica e (2) realizar uma extensão da avaliação proposta, através de indicadores de qualidade, para toda a rede cicloviária do município, por meio de interpoladores espaciais geoestatísticos. Assim, é proposta uma abordagem de duas etapas. Incialmente, foram identificados fatores físicos e operacionais que afetam a qualidade da infraestrutura cicloviária para a elaboração da hierarquia. Posteriormente, foi aplicado um formulário a cinco especialistas em infraestrutura cicloviária e usuários de ciclovias/ciclofaixas, com o objetivo de ponderar os critérios. Após a ponderação dos critérios, que compõem a estrutura hierárquica proposta, foram utilizados dados de 27 trechos cicloviários, coletados em campo. Após a pontuação associada a cada trecho, estes foram classificados e mapas temáticos foram construídos para a localização dos trechos críticos. Observando-se a existência de dependência espacial, em relação ao indicador de qualidade cicloviária, foi possível realizar uma modelagem geoestatística e estimar o indicador de qualidade para 32 trechos não inspecionados previamente em campo. Dessa forma, o mapa da rede cicloviária completa, devidamente avaliada, pode ser utilizado como ferramenta de baixo custo de apoio à tomada de decisão e implementações de políticas de transporte.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
TRALDI , W. de A.; MARQUES , S. de F.; PITOMBO, C. S.; SOUSA, P. B. de; MELO, R. A. de. Avaliação da Infraestrutura Cicloviária e Interpolação Espacial de seus Indicadores de Qualidade: uma Abordagem Baseada em Análise Hierárquica e Geoestatística. Revista Brasileira de Cartografia, [S. l.], v. 74, n. 4, p. 968–985, 2022. DOI: 10.14393/rbcv74n4-65916. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/65916. Acesso em: 20 dez. 2024.
Seção
Artigos Originais

Referências

ANTUNES, L. L. Avaliação das infraestruturas cicloviárias implantadas no Corredor Universitário em Goiânia. Goiânia, 2015. 315 f. Dissertação (Mestrado) - Universidade Federal de Goiás, Escola de Engenharia Civil e Ambiental (EECA), Programa de Pós-Graduação em Engenharia Civil - Geotecnia, Estruturas e Construção Civil.

ASSOCIAÇÃO NACIONAL DE TRANSPORTE PÚBLICOS (ANTP). Ciclovias mais largas e sem zigue-zagues podem ser legado da pandemia. 2020. Disponível em: http://www.antp.org.br/noticias/clippings/ciclovias-mais-largas-e-sem-zigue-zagues-podem-ser-legado-da-pandemia.html. Acesso em: 10 jul. 2021.

ASSOCIAÇÃO NACIONAL DE TRANSPORTE PÚBLICOS (ANTP). Pandemia reforça necessidade de ações para mobilidade ativa. 2021. Disponível em: http://www.antp.org.br/noticias/clippings/pandemia-reforca-necessidade-de-acoes-para-mobilidade-ativa-.html. Acesso em: 10 jul. 2021.

AYACHI, F. S.; DOREY, J.; GUASTAVINO, C. Identifying factors of bicycle comfort: An online survey with enthusiast cyclists. Applied Ergonomics, v. 46, p. 124-136, 2015. DOI. 10.1016/j.apergo.2014.07.010.

BATISTA, D. G. P.; LIMA, E. R. V. Índice de avaliação da qualidade de infraestruturas cicloviárias: um estudo em João Pessoa-PB. Urbe. Revista Brasileira de Gestão Urbana, v. 12. 2020. DOI: 10.1590/2175-3369.012.e20190086.

BRASIL. Lei Federal nº 12.587, de 03 de janeiro de 2012. Política Nacional de Mobilidade Urbana. Disponível em: <https://www2.camara.leg.br/legin/fed/lei/2012/lei-12587-3-janeiro-2012-612248-publicacaooriginal-134894-pl.html>. Acesso em: 10 jul. 2021.

DE SOUSA, P. B.; KAWAMOTO, E. Análise de fatores que influem no uso da bicicleta para fins de planejamento cicloviário. Transportes, v. 23, n. 4, p. 79–87. 2015. DOI. 10.14295/transportes.v23i4.928.

CALVEY, J. C.; SHACKLETON, J. P.; TAYLOR, M. D.; LLEWELLYN, R. Engineering condition assessment of cycling infrastructure: cyclists' perceptions of satisfaction and comfort. Transportation Research Part A: Policy and Practice. 78, p. 134-143, 2015. DOI. 10.1016/j.tra.2015.04.031

CAMPOS, V. B. G.; CARDOSO, P. D. B. Metodologia para planejamento de um de sistema cicloviário. Transportes, v. 24, n. 4, p. 39–48, 2016. DOI. 10.14295/transportes.v24i4.1158.

CARVALHO, S. D. P. C. E; RODRIGUEZ, L. C. E.; SILVA, L. D.; CARVALHO, L. M. T. D.; CALEGARIO, N.; LIMA, M. P. D.; SILVA, C. A.; MENDONÇA, A. R. D.; NICOLETTI, M. F. Predição do volume de árvores integrando Lidar e Geoestatística. Scientia Forestalis/Forest Sciences, v. 43, n. 107, p. 627–637, 2015.

CHICA-OLMO, J.; RODRÍGUEZ-LÓPEZ, C.; CHILLÓN, P. Effect of distance from home to school and spatial dependence between homes on mode of commuting to school. Journal of Transport Geography, v. 72, p. 1–12, 2018. DOI. 10.1016/j.jtrangeo.2018.07.013.

COSTA, H. G. Introdução ao método de análise hierárquica: análise multicritério no auxílio à decisão. Niterói, RJ. 2002.

COSTA, C.S.; PITOMBO, C.S.; SOUZA, F. L. U. Travel Behavior before and during the COVID-19 Pandemic in Brazil: Mobility Changes and Transport Policies for a Sustainable Transportation System in the Post-Pandemic Period. Sustainability, v. 14, p. 4573, 2022. DOI. 10.3390/su14084573

CRESSIE, N. A. C. Statistics for spatial data. John Wiley & Sons, Inc., 1993.

DIXON, L. B. Bicycle and Pedestrian Level-of-Service Performance Measures and Standards for Congestion Management Systems. Transportation Research Record, v. 1538, n. 1, p. 1–9, 1996. DOI. 10.1177/0361198196153800101.

FONSECA, N. F. D. S.; MANZATO, G. G.; TEIXEIRA I. P.; RODRIGUES DA SILVA, A.N. Um índice para a caracterização da oferta de infraestrutura cicloviária. Anais do 32º Congresso Nacional de Pesquisa e Ensino e Pesquisa em Transporte, ANPET, Gramado, v. 1, p. 2630 – 2641, 2018.

GOMES, M. M.; PITOMBO, C. S.; PIRDAVANI, A.; BRIJS, T. Geostatistical approach to estimate car occupant fatalities in traffic accidents. Revista Brasileira de Cartografia, v. 70, n. 4, p. 1231–1256, 2018. DOI. 10.14393/rbcv70n4-46140.

GOOVAERTS, P. Medical geography: A promising field of application for geostatistics. Mathematical Geosciences, v. 41, p. 243–264, 2009. DOI. 10.1007/s11004-008-9211-3.

JOÃO PESSOA. P2b - Relatório do Diagnóstico Técnico: Fase II - Outubro/2021. Prefeitura Municipal de João Pessoa, PMJP. Disponível em: http://pdjp.com.br/wp-content/uploads/2021/10/115_2021.10.08_P2b_DIAGNOSTICO-TECNICO.pdf. Acesso em 08/08/2022.

KERRY, R.; GOOVAERTS, P.; GIMÉNEZ, D.; OUDEMANS, P.; MUÑIZ, E. Investigating geostatistical methods to model within-field yield variability of cranberries for potential management zones. Precision Agriculture, v. 17, p. 247–273, 2016. DOI. 10.1007/s11119-015-9408-7.

KRIGE, D. G. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, v. 52, n. 6, p. 119–139, 1951. Southern African Institute of Mining and Metallurgy.

LINDNER, A.; PITOMBO, C. S.; ROCHA, S. S.; QUINTANILHA, J. A. Estimation of transit trip production using Factorial Kriging with External Drift: an aggregated data case study. Geo-spatial Information Science, v. 19, n. 4, p. 245–254, 2016. DOI. 10.1080/10095020.2016.1260811.

LINDNER, A.; PITOMBO, C. S. Sequential Gaussian Simulation as a promising tool in travel demand modeling. Journal of Geovisualization and Spatial Analysis, v. 3, 2019. DOI. 10.1007/s41651-019-0038-x.

MAJUMDAR, A.; NOLAND, R. B.; OCHIENG, W. Y. A spatial and temporal analysis of safety-belt usage and safety-belt laws. Accident Analysis & Prevention, v. 36, n. 4, p. 551–560, 2004. DOI. 10.1016/S0001-4575(03)00061-7.

MALDONADO-HINAREJOS, R.; SIVAKUMAR A.; POLAK, J. W. Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach. Transportation, v.41, n. 6, p. 1287-1304, 2014. DOI. 10.1007/s11116-014-9551-4.

MARQUES, S. D. F.; PITOMBO, C. S. Ridership Estimation Along Bus Transit Lines Based on Kriging: Comparative Analysis Between Network and Euclidean Distances. Journal of Geovisualization and Spatial Analysis, v. 5, n. 1, p. 7, 2021a. DOI.10.1007/s41651-021-00075-w.

MARQUES, S. D. F.; PITOMBO, C. S. Applying Multivariate Geostatistics for Transit Ridership Modeling at the Bus Stop Level. Boletim de Ciências Geodésicas, v. 27, n. 2, 2021b. DOI. 10.1590/1982-2170-2020-0069.

MATHERON, G. Principles of geostatistics. Economic Geology, v. 58, n. 8, p. 1246–1266, 1963. DOI. 10.2113/gsecongeo.58.8.1246.

MATHERON, G. The Theory of Regionalized Variables and Its Applications, 1971. Paris: Les Cahiers du Centre de Morphologie Mathematique in Fontainebleu.

MEDEIROS, R. S.; MELO, R. A.; SOUSA, P. B. Uso de Indicadores para Avaliação do Sistema Viário Urbano. In: 33º Congresso de Pesquisa e Ensino em Transportes, 2019, Balneário Camboriú-SC. Anais...Associação Nacional de Pesquisa e Ensino em Transportes, 2019. p. 178-188.

MONTEIRO, F. B.; CAMPOS, V. B. G. Métodos de avaliação da qualidade dos espaços para ciclistas. In: XXV Congresso de Pesquisa e Ensino em Transportes da ANPET, 2011, Belo Horizonte-MG. Anais...Associação Nacional de Pesquisa e Ensino em Transportes, 2011. p. 1242-1253.

PITOMBO, C. S.; SALGUEIRO, A. R.; DA COSTA, A. S. G.; ISLER, C. A. A two-step method for mode choice estimation with socioeconomic and spatial information. Spatial Statistics, v. 11, p. 45–64, 2015. DOI. 10.1016/j.spasta.2014.12.002.

PROVIDELO, J. K.; SANCHES, S. D. P. Percepções de indivíduos acerca do uso da bicicleta como modo de transporte. Transportes, v. 18, n. 2, 2010. DOI. 10.14295/transportes.v18i2.424.

PROVIDELO, J. K.; SANCHES, S. D. P. Roadway and traffic characteristics for bicycling. Transportation, v. 38, n. 5, p. 765-777, 2011. DOI. 10.1007/s11116-011-9353-x.

RODRIGUES DA SILVA, A. N.; PITOMBO, C. S.; PEDREIRA JÚNIOR, J. U.; CIRÍACO, T. G. M.; COSTA, C. S. Changes in Mobility and Challenges to the Transport Sector in Brazil due to COVID-19. Em: TRANSPORTATION AMID PANDEMICS: PRACTICES AND POLICIES; Amsterdam, The Netherlands: Elsevier, 2022, v. 1, p. 105-118. DOI. 10.1016/B978-0-323-99770-6.00010-7.

SAATY, T. L. Método de análise hierárquica. São Paulo: McGraw-Hill, Makron, 1991.

SAATY, T. L.; VARGAS, L. G. Models, methods, concepts applications of the analytic hierarchy process – 2001. Norwell: Kluwer Academic Publishers.

SELBY, B.; KOCKELMAN, K. M. Spatial prediction of traffic levels in unmeasured locations: Applications of universal kriging and geographically weighted regression. Journal of Transport Geography, v. 29, p. 24–32, 2013. DOI. 10.1016/j.jtrangeo.2012.12.009.

SFDPH. Bicycle Environmental Quality Index (BEQI). Draft Report. San Francisco Department of Public Health, Environmental Health Section/Program on Health, Equity and Sustainability, San Francisco, CA United States Draft Report, 2009.

SILVEIRA, M. O.; MAIA, M. L. A. Variáveis que influenciam no uso da bicicleta e as crenças da teoria do comportamento planejado. Transportes, v. 23, n. 1, p. 24-36, 2015. DOI. 10.14295/transportes.v23i1.848.

STELZENMÜLLER, V.; EHRICH, S.; ZAUKE, G. P. Impact of additional small-scale survey data on the geostatistical analyses of demersal fish species in the North Sea. Scientia Marina, v. 69, n. 4, p. 587–602, 2005. DOI. 10.3989/scimar.2005.69n4587.

TOBLER, W. R. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, v. 46, p. 234–240, 1970. DOI. 10.2307/143141.

VARGAS, L. G. An overview of the Analytic Hierarchy Process and its applications. European Journal of Operations Research, v.28, p. 2-8, 1990. DOI. 10.1016/0377-2217(90)90056-H.

WEBSTER, R.; OLIVER, M. A. Geostatistics for environmental scientists. 2nd. ed. John Wiley & Sons, 2007.

YAMAMOTO, J. K.; LANDIM, P. M. B. Geoestatística: conceitos e aplicações. Oficina de textos, 2015.

YANG, H.; YANG, J.; HAN, L. D.; LIU, X.; PU, L.; CHIN, S.; HWANG, H. A Kriging based spatiotemporal approach for traffic volume data imputation. PloS one, v. 13, n. 4, p. e0195957, 2018. DOI. 10.1371/journal.pone.0195957.

ZHANG, D.; WANG, X. C. Transit ridership estimation with network Kriging: A case study of Second Avenue Subway, NYC. Journal of Transport Geography, v. 41, p. 107–115, 2014. DOI. 10.1016/j.jtrangeo.2014.08.021.