On repunit polynomials sequence
DOI:
https://doi.org/10.14393/BEJOM-v5-2024-72280Keywords:
Polynomial repunit, repunit number, sequenceAbstract
In this paper, we define a sequence of polynomials associated with the repunit numerical sequence. This involves extending the concept of the repunit sequence, a sequence type Horadam, represented by the sequence of repunit numbers, where rₙ represents the n-th repunit, and the recurrence relation: rₙ₊₁ = 11rₙ-10rₙ₋₁, with r₀ = 0, r₁ = 1 for n ≥ 1. In this paper, we investigate this new polynomial sequence in detail and present some results and applications derived from this investigation. For instance, we study the characteristic equation and derive the corresponding generating function. Additionally, we analyze the recurrence relation associated with the sum of n repunit polynomials.
Downloads
References
BEILER, A. H. Recreations in the theory of numbers: the queen of mathematics entertains. 2nd ed. New York: Dover, 1966.
COSTABILE, F. A.; GUALTIERI, M. I. and NAPOLI, A. Polynomial Sequences and their applications (Editorial), Mathematics (MDPI), n. 326, p. 1–3, 2024.
COSTA, E. A. ; SANTOS, D. C. Algumas propriedades dos números monodígitos e repunidades. Revista de Matemática da UFOP, v. 2, p. 47-58, 2022.
COSTA, E.; SANTOS, D; CATARINO, P. and SPREAFICO, E. On Repunit integer Gaussian and Quaternion numbers [submited]
HOGGATT JR, V. E.; BICKNELL, M. Roots of Fibonacci polynomials. The Fibonacci Quarterly, v. 11, n. 3, p. 271–274, 1973.
HORADAM, A. F. Basic properties of a certain generalized sequence of numbers. The Fibonacci Quarterly, n. 3, 161–176, 1965.
HORZUM, T.; KOÇER, E. G. On some properties of Horadam polynomials. Int. Math. Forum. Vol. 4. No. 25, 2009.
JAROMA, J. H. Factoring generalized repunits. Bulletin of the Irish Mathematical Society, n. 59, p. 29–35. 2007
LIMA, E. L. Análise real Vol. 1. Coleção Matemática Universitária. IMPA, Rio de Janeiro, 2020.
ROSEN, K. H. Discrete mathematics and its applications. The McGraw Hill Companies, 2007.
SANTOS, D. C.; COSTA, E. A. Um passeio pela sequência repunidade. CQD Revista Eletrônica Paulista de Matemática, p. 241-254, 2023.
SANTOS, D. C.; COSTA, E. A. A note on repunit number sequence. Intermaths, v. 5, n. 1, p. 54-66, 2024.
SHANNON, A. G. Fibonacci analogs of the classical polynomials. Mathematics Magazine 48.3, p.123–130, 1975.
SHANNON, A. G.; ÖMȖR, D. A note on the coefficient array of a generalized Fibonacci polynomial. Notes on Number Theory and Discrete Mathematics 26.4, p. 206–212, 2020 . Braz. Elect. J. Math., Ituiutaba, v.5, jan/dez, 2024, p. 1 - 15. 14
SIKHWAL, O.; Yashwant, V. Fibonacci polynomials and determinant identities. Turk. J. Anal. Number Theory v.2, n. 5, p. 189–192, (2014):
SLOANE, N. J. A. et al. The on-line encyclopedia of integer sequences, (2024). http://oeis.org/A002275.
SOYKAN, Y. Interrelations between Horadam and Generalized Horadam-Leonardo Polynomials via Identities. Int. J. Adv. Appl. Math. and Mech. 11(1) p. 42-55, 2023.
YATES, S. Repunits and repetends. Star Publishing Co., Inc. Boynton Beach, Florida, 1992.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Eudes Antonio Costa, Fernando Soares de Carvalho
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The published articles are licensed under the CreativeCommons CCBY-NC/4.0 version. By submitting the material for publication, the authors automatically waive their copyright, agree to the editorial guidelines of the journal, and assume that the text has been properly reviewed. Simultaneous submission of articles to other journals is prohibited, as is the translation of articles published in the journal into another language without proper authorization.