AVALIAÇÃO DE CLASSIFICADORES BASEADOS EM APRENDIZADO DE MÁQUINA PARA A CLASSIFICAÇÃO DO USO E COBERTURA DA TERRA NO BIOMA CAATINGA
Main Article Content
Abstract
O manejo adequado dos recursos naturais em ambientes frágeis, como o da Caatinga, requer o conhecimento de suas propriedades e distribuição espacial. Nesse contexto, o trabalho tem por objetivo avaliar o desempenho de dois algoritmos baseados em aprendizado de máquina (Multi Layer Perceptron (MLP) e o Support Vector Machine (SVM)) e do método da Máxima Verossimilhança na classificação do uso e cobertura da terra no bioma Caatinga. Para o experimento, foi utilizada uma imagem do satélite LANDSAT-5/TM contendo a área de estudo localizada no município de Iguatu-CE e definidas as classes de cobertura da terra, a saber: antropização por agricultura (APA), outros tipos de antropização (OTA), água, caatinga herbácea arbustiva (CHA) e caatinga arbórea densa (CAD). O desempenho dos métodos foi analisado através dos coeficientes de Exatidão Global (EG), Exatidão Específica (EE) e Kappa (K) calculados a partir dos dados da matriz de confusão correspondente à verdade terrestre. Os valores do coeficiente de EG foram de: 86,03%, 82,14% e 81,2% e K de: 0,77, 0,76 e 0,75 nos métodos SVM, MLP e Máxima Verossimilhança, respectivamente. Os valores de EE foram superiores a 70% para todos os classificadores testados. Os resultados obtidos demonstram que os métodos SVM e MLP estão aptos à classificação dos padrões propostos, já que apresentaram resultados semelhantes ao método tradicional da Máxima Verossimilhança. Porém, estes classificadores podem consumir mais tempo na etapa de definição dos parâmetros da rede e de processamento.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see "The Effect of Open Access").