Deep Learning: an Integrative Systematic Review of Its Applications in Mapping Using UAV Imagery

Main Article Content

Elmo Bispo de Oliveira
https://orcid.org/0009-0005-5797-2219
Vivian de Oliveira Fernandes
https://orcid.org/0000-0002-2851-9141
Mauro José Alixandrini Júnior
https://orcid.org/0000-0002-5376-7171

Abstract

The advances in Deep Learning (DL) techniques have expanded the use of Unmanned Aerial Vehicles (UAVs) for cartographic mapping and remote sensing, enhancing automation and the accuracy of geospatial products. Given the rapid growth of such applications, this article aims to systematize and critically analyze research integrating DL and UAV imagery in the mapping context, focusing on the main neural network architectures, sensors, and application domains. An integrative systematic review was conducted using the Web of Science, Scopus, and ScienceDirect databases, covering the period from 2020 to 2025. The screening process resulted in 22 selected studies, grouped into five thematic categories: agriculture, object detection, inspections, wildfires, and LiDAR. The findings highlight the predominance of YOLO and U-Net architectures, the increasing use of multispectral and thermal data, and the lack of methodological standardization in training and validation processes. The integrative analysis revealed trends, gaps, and ethical and technical challenges in applying DL with UAV imagery for mapping purposes. This research contributes to consolidating technical and scientific knowledge in this field and reinforces the need for standardized protocols and practices in the development of AI-based cartographic products.

Downloads

Download data is not yet available.

Article Details

Section

Cartography and GIS

Author Biography

Elmo Bispo de Oliveira , Federal University of Bahia.

Elmo Bispo de Oliveira, born in Salvador, Bahia (1992), holds a degree in Surveying and Cartographic Engineering (2022) from the Federal University of Bahia (UFBA) and is currently pursuing a Master’s degree in Civil Engineering at the Graduate Program in Civil Engineering (PPEC/UFBA). He is a lecturer in the Department of Transport and Geodesy at the Polytechnic School of UFBA. Previously, he worked as a Senior Specialist in Surveying and Cartographic Engineering at the Polytechnic School Foundation of Bahia under the FEP/SEFAZ-PMS agreement. He also has professional experience as a Geoprocessing Analyst at Produs Soluções em TI (Produs/INEMA contract) and as Coordinator of Aerial Surveying and Georeferencing at Terra Exata Soluções em Geotecnologias.

How to Cite

BISPO DE OLIVEIRA , Elmo; DE OLIVEIRA FERNANDES , Vivian; JOSÉ ALIXANDRINI JÚNIOR, Mauro. Deep Learning: an Integrative Systematic Review of Its Applications in Mapping Using UAV Imagery. Brazilian Journal of Cartography, [S. l.], v. 77, n. 0a, 2025. DOI: 10.14393/rbcv77n0a-78494. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/78494. Acesso em: 28 dec. 2025.

References

Aibibu, T., Lan, J., Zeng, Y., Lu, W., & Gu, N. (2023). An Efficient Rep-Style Gaussian–Wasserstein Network: Improved UAV Infrared Small Object Detection for Urban Road Surveillance and Safety. Remote Sensing, 16(1), 25. https://doi.org/10.3390/rs16010025

Alotaibi, E., & Nassif, N. (2024). Artificial intelligence in environmental monitoring: in-depth analysis. Discover Artificial Intelligence, 4(1). https://doi.org/10.1007/s44163-024-00198-1

Aszkowski, P., Ptak, B., Kraft, M., Pieczyński, D., & Drapikowski, P. (2023). Deepness: Deep neural remote sensing plugin for QGIS. SoftwareX, 23, 101495. https://doi.org/10.1016/j.softx.2023.101495

Fei, S., Hassan, M. A., He, Z., Chen, Z., Shu, M., Wang, J., Li, C., & Xiao, Y. (2021). Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sensing, 13(12), 2338. https://doi.org/10.3390/rs13122338

Hooshyar, M., Li, Y.-S., Chun Tang, W., Chen, L.-W., & Huang, Y.-M. (2024). Economic Fruit Trees Recognition in Hillsides: A CNN-Based Approach Using Enhanced UAV Imagery. IEEE Access, 12, 61991–62005. https://doi.org/10.1109/access.2024.3391371

Jeon, M., Moon, J., Jeong, S., & Oh, K. (2024). Autonomous flight strategy of an unmanned aerial vehicle with multimodal information for autonomous inspection of overhead transmission facilities. Computer-Aided Civil and Infrastructure Engineering, 39(14), 2159–2186. https://doi.org/10.1111/mice.13188

Lang, M., Antsov, M., Mumma, A., Suitso, I., Kuusk, A., & Piip, K. (2025). Comparison of forest canopy gap fraction measurements from drone-based video frames, below-canopy hemispherical photography, and airborne laser scanning. European Journal of Remote Sensing, 58(1). https://doi.org/10.1080/22797254.2025.2456629

Li, Y., Fan, Q., Huang, H., Han, Z., & Gu, Q. (2023). A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition. Drones, 7(5), 304. https://doi.org/10.3390/drones7050304

Lu, D., Xu, L., Zhou, J., Gao, K., Gong, Z., & Zhang, D. (2025). 3D-UMamba: 3D U-Net with state space model for semantic segmentation of multi-source LiDAR point clouds. International Journal of Applied Earth Observation and Geoinformation, 136, 104401. https://doi.org/10.1016/j.jag.2025.104401

Mohammadi, S., Uhlen, A. K., Lillemo, M., Ergon, Å., & Shafiee, S. (2024). Enhancing phenotyping efficiency in faba bean breeding: integrating UAV imaging and machine learning. Precision Agriculture, 25(3), 1502–1528. https://doi.org/10.1007/s11119-024-10121-4

Nakamura, T., Kioka, A., Egawa, K., Ishii, T., & Yamada, Y. (2024). Estimating millimeter-scale surface roughness of rock outcrops using drone-flyover structure-from-motion (SfM) photogrammetry by applying machine learning model. Earth Science Informatics, 17(3), 2399–2416. https://doi.org/10.1007/s12145-024-01280-z

Pan, Y., Li, L., Qin, J., Chen, J., & Gardoni, P. (2024). Unmanned aerial vehicle–human collaboration route planning for intelligent infrastructure inspection. Computer-Aided Civil and Infrastructure Engineering, 39(14), 2074–2104. https://doi.org/10.1111/mice.13176

Park, M., Kim, H., & Lee, J. (2024). Detection and grading of compost heap using UAV and deep learning. Korean Journal of Remote Sensing, 40(1), 33–43. https://doi.org/10.7780/kjrs.2024.40.1.4

Peixoto Oliveira, L. T., Oliveira, E. B., Fernandes, V. O., Lima, C. D. A. (2024). Análise comparativa de métodos para identificação de defeitos em pavimento com uso de imagens de RPA. In: Anais do 38º Congresso de Pesquisa e Ensino em Transportes. Galoá. https://proceedings.science/anpet/anpet-2024/trabalhos/analise-comparativa-de-metodos-para-identificacao-de-defeitos-em-pavimento-com-u?lang=pt-br

Prince, Simon J. D. Understanding deep learning. Cambridge: MIT Press. (2023) https://udlbook.github.io/udlbook/

Rahnamayiezekavat, P., Wang, D., Chai, J., Moon, S., Rashidi, M., & Wang, X. (2024). Automated pavement marking integrity assessment using a UAV platform – a test case of public parking. Journal of Asian Architecture and Building Engineering, 24(3), 1594–1605. https://doi.org/10.1080/13467581.2024.2329358

Saydirasulovich, S. N., Mukhiddinov, M., Djuraev, O., Abdusalomov, A., & Cho, Y.-I. (2023). An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images. Sensors, 23(20), 8374. https://doi.org/10.3390/s23208374

Shamta, I., & Demir, B. E. (2024). Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV. PLOS ONE, 19(3), e0299058. https://doi.org/10.1371/journal.pone.0299058

Skobalski, J., Sagan, V., Alifu, H., Al Akkad, O., Lopes, F. A., & Grignola, F. (2024). Bridging the gap between crop breeding and GeoAI: Soybean yield prediction from multispectral UAV images with transfer learning. ISPRS Journal of Photogrammetry and Remote Sensing, 210, 260–281. https://doi.org/10.1016/j.isprsjprs.2024.03.015

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Soeleman, M. A., Supriyanto, C., & Purwanto. (2023). Deep Learning Model for Unmanned Aerial Vehicle-based Object Detection on Thermal Images. Revue d’Intelligence Artificielle, 37(6), 1441–1447. https://doi.org/10.18280/ria.370608

Sui, T., Huang, Q., Wu, M., Wu, M., & Zhang, Z. (2024). BiAU-Net: Wildfire burnt area mapping using bi-temporal Sentinel-2 imagery and U-Net with attention mechanism. International Journal of Applied Earth Observation and Geoinformation, 132, 104034. https://doi.org/10.1016/j.jag.2024.104034

Tiwari, A., Bardhan, S., & Kumar, V. (2022). A Bibliographic Study on Artificial Intelligence Research: Global Panorama and Indian Appearance. Library Herald, 60(4), 15–36. https://doi.org/10.5958/0976-2469.2022.00036.7

Yigitcanlar, T., David, A., Li, W., Fookes, C., Bibri, S. E., & Ye, X. (2024). Unlocking Artificial Intelligence Adoption in Local Governments: Best Practice Lessons from Real-World Implementations. Smart Cities, 7(4), 1576–1625. https://doi.org/10.3390/smartcities7040064

Yigitcanlar, T., Senadheera, S., Marasinghe, R., Bibri, S. E., Sanchez, T., Cugurullo, F., & Sieber, R. (2024). Artificial intelligence and the local government: A five-decade scientometric analysis on the evolution, state-of-the-art, and emerging trends. Cities, 152, 105151. https://doi.org/10.1016/j.cities.2024.105151

Yu, J., Wang, J., & Leblon, B. (2021). Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn. Remote Sensing, 13(16), 3105. https://doi.org/10.3390/rs13163105

Yuan, W. (2024). AriAplBud: An Aerial Multi-Growth Stage Apple Flower Bud Dataset for Agricultural Object Detection Benchmarking. Data, 9(2), 36. https://doi.org/10.3390/data9020036

Zhang, J., Zhou, X., Shen, D., Yu, Q., Yuan, L., & Dong, Y. (2024). Development of Spectral Features for Monitoring Rice Bacterial Leaf Blight Disease Using Broad-Band Remote Sensing Systems. Phyton-International Journal of Experimental Botany, 93(4), 745–762. https://doi.org/10.32604/phyton.2024.049734

Zhao, Y., Luo, W., Wang, Z., Zhang, G., Liu, J., Li, X., & Wang, Q. (2024). An oil and gas pipeline inspection UAV based on improved YOLOv7. Measurement and Control, 57(8), 1068–1086. https://doi.org/10.1177/00202940241230426

Similar Articles

You may also start an advanced similarity search for this article.