Comparison of Statistical Modeling for SAR Data in Land Cover Classification: a Case Studyin the Brazilian Amazon Region

Main Article Content

Vinícius Queiroz
Mariane Souza Reis
https://orcid.org/0000-0001-9356-7652
Sidnei João Siqueira Sant'Anna

Abstract

SAR images are an alternative for land cover classification since these sensors obtain images almost independently
of weather conditions. Parametric image classification methods are often based on a Gaussian distribution, simplifying statistical modeling. However, the assumption of a Gaussian distribution may not be suitable for modeling samples from SAR images. Therefore, this study aimed to compare the results of land cover classification using SAR images modeled with statistical distributions. To this end, 1000 supervised classifications were carried out on a PALSAR/ALOS image of the Lower Tapajós/PA region, using the maximum likelihood classifier adapted to the Gaussian, Gamma, and Intensity joint distribution. The analysis classes were defined as Agriculture, Exposed Soil, Pasture, Forest, and Secondary Vegetation. As a result, models with the same dimensionality and polarizations had similar overall classification performances, but it
should be noted that the bivariate models showed better overall accuracy than the univariate ones. The Gaussian distribution can replace specific distributions for SAR data without compromising overall classification performance in some cases. Concerning metrics by class, no models were found that separate all classes well, especially the Forest and Secondary Vegetation classes, whose separability is difficult. However, the Exposed Soil class is well classified in all models.

Downloads

Download data is not yet available.

Article Details

Section

Remote Sensing

Author Biography

Vinícius Queiroz, Instituto Nacional de Pesquisas Espaciais

.

How to Cite

QUEIROZ, Vinícius; SOUZA REIS, Mariane; JOÃO SIQUEIRA SANT'ANNA, Sidnei. Comparison of Statistical Modeling for SAR Data in Land Cover Classification: a Case Studyin the Brazilian Amazon Region. Brazilian Journal of Cartography, [S. l.], v. 77, n. 0a, 2025. DOI: 10.14393/rbcv77n0a-75196. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/75196. Acesso em: 12 dec. 2025.

References

ALMEIDA, C. A.; COUTINHO, A. C.; ESQUERDO, J. C. D. M.; ADAMI, M.; VENTURIERI, A.;

DINIZ, C. G.; DESSAY, N.; DURIEUX, L.; GOMES, A. R. High spatial resolution land use

and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and

MODIS data. [S.l.], 2016. P. 291–302. DOI: 10.1590/1809-4392201505504. Disponível em:

<https://doi.org/10.1590/1809-4392201505504>.

ANFINSEN, S. N.; DOULGERIS, A. P.; ELTOFT, T. Estimation of the equivalent number of looks

in polarimetric Synthetic Aperture Radar imagery. IEEE Transactions on Geoscience and

Remote Sensing, IEEE, v. 47, n. 11, p. 3795–3809, 2009. DOI: 10.1109/TGRS.2009.2019269.

BESAG, J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series

B (Methodological), v. 48, p. 259–302, 1986.

BRASIL. Dispõe sobre a criação da Floresta Nacional do Tapajóse e dá outras providências.

[S.l.: s.n.], 1974. Decreto Federal n.º 73.684, de 21 de novembro de 1974. Disponível em:

https://legislacao.presidencia.gov.br/atos/?tipo=DEC&numero=73684&ano=1974&ato=

5c3oXQE1EMnRVT95b. Acesso em: 25 out. 2025.

CORREIA, A. H. Projeto, desenvolvimento e avaliação de classificadores estatísticos pontuais

e contextuais para imagens SAR polarimétricas. 1999. F. 1999. 162. Mestrado em Sensoriamento

Remoto – Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos.

Disponível em: <http://urlib.net/sid.inpe.br/deise/1999/09.14.14.45>.

DUTRA, L. V.; RENNÓ, C. D.; REIS, M. S.; GAMBA, P. A Generative Method for Simultaneous

Classification of Remote Sensing Time Series Data Using and Ensemble of Decision Tree

Classifiers. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 10., 2023,

Florianópolis. ANAIS... São José dos Campos: INPE, 2023. P. 179–182. ISBN 978-65-89159-

04-9.

EUROPEAN SPACE AGENCY. Information on ALOS PALSAR products for ADEN users. [S.l.],

2007. P. 18.

FRERY, A. C.; CORREA, A.; RENNO, C. D.; FREITAS, C. C; JACOBO-BERLLES, J.; VASCONCELLOS,

K. L. P.; MEJAIL, M.; SANT’ANNA, S. J. S. Models for Synthetic Aperture Radar

image analysis. Resenhas do Instituto de Matematica e Estatistica da Universidade de São

Paulo, v. 4, n. 1, p. 45–77, 1999.

FRERY, A. C.; CORREIA, A. H.; FREITAS, C. C. Classifying multifrequency fully polarimetric

imagery with multiple sources of statistical evidence and contextual information. IEEE

Transactions on Geoscience and Remote Sensing, v. 45, n. 10, p. 3098–3109, 2007. DOI:

/10.1109/TGRS.2007.903828.

FRERY, A. C.; FREITAS, C.; SANT’ANNA, Sidnei J. S.; RENNÓ, Camilo D. Statistical properties of

SAR data and their consequences. United Nations Programme on Space Applications, v. 10,

p. 53, 1999.

FRERY, A. C.; VIEIRA, P. R.; SANT’ANNA, S. J. S.; RENNÓ, C. D. et al. A user-friendly system for

Synthetic Aperture Radar image classification based on grayscale distributional properties and

context. In: IEEE. PROCEEDINGS X Brazilian Symposium on Computer Graphics and Image

Processing. [S.l.: s.n.], 1997. P. 211–218.

GAO, G. Statistical modeling of SAR images: A survey. Sensors, Molecular Diversity Preservation

International (MDPI), v. 10, n. 1, p. 775–795, 2010.

GARG, A.; SINGH, D. Development of an efficient contextual algorithm for discrimination of tall

vegetation and urban for PALSAR data. IEEE Transactions on Geoscience and Remote

Sensing, IEEE, v. 56, n. 6, p. 3413–3420, 2018.

JENSEN, J. R. Remote Sensing of the environment: an earth resource perspective. Harlow: Pearson

Education Limited, 2014. v. 2, p. 592. ISBN 978-1-292-02170-6.

KOLMOGOROV, A. Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto

Italiano degli Attuari, v. 4, p. 83–91, 1933.

KWAK, S.; KIM, Jong Hae. Central limit theorem: the cornerstone of modern statistics. Korean

Journal of Anesthesiology, v. 70, p. 144–156, 2017. DOI: 10.4097/kjae.2017.70.2.144.

LAMBIN, E. F.; GEIST, H.; RINDFUSS, R. R. Introduction: local processes with global impacts.

Land-use and land-cover change: Local processes and global impacts, Springer, p. 1–8,

2006.

LEE, J. S.; HOPPEL, K.W.; MANGO, S. A; MILLER, A. R. Intensity and phase statistics of multilook

polarimetric and interferometric SAR imagery. IEEE Transactions on Geoscience and

Remote Sensing, v. 32, n. 5, p. 1017–1028, 1994. ISSN 0196-2892. DOI: 10.1109/36.312890.

LEE, J.S.; POTTIER, E. Polarimetric radar imaging: from basics to applications. [S.l.]: CRC press,

2017.

MAHAPATRA, D. K.; FRERY, A. C.; PRADHAN, Bibhuti B.; ROY, L. P. A Review on parametric

and semiparametric distributions in characterizing Synthetic Aperture Radar clutter data. IEEE

Access, v. 12, p. 83340–83362, 2024.

MARTINS, V. S.; NOVO, E. M.L.M.; LYAPUSTIN, A.; ARAGÃO, L. E.O.C.; FREITAS, S. R.;

BARBOSA, C. C.F. Seasonal and interannual assessment of cloud cover and atmospheric

constituents across the Amazon (2000–2015): insights for remote sensing and climate analysis.

ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, v. 145, p. 309–327, 2018.

MEYER, F. Spaceborn Synthetic Aperture Radar: principles data access and basic process techniques.

In: FLORES-ANDERSON, A. I.; HERNDON, K. E.; THAPA, R. B.; CHERRINGTON, E. (Ed.).

The SAR handbook: comprehensive methodologies for forest monitoring and biomass

estimation. Huntsville: National Space Science e Technology Center, 2019. Astrophysics and

Space Science Proceedings. P. 21–64.

NEGRI, R. G.; DUTRA, L. V.; FREITAS, C. C.; LU, D. Exploring the Capability of ALOS PALSAR

L-Band Fully Polarimetric Data for Land Cover Classification in Tropical Environments. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 9, n. 12,

p. 5369–5384, 2016a.

NEGRI, R. G.; DUTRA, L. V.; SANT’ANNA, S. J. S.; LU, D. Examining region-based methods for

land cover classification using stochastic distances. International Journal of Remote Sensing,

Taylor & Francis, v. 37, n. 8, p. 1902–1921, 2016.

OLIVER, C.; QUEGAN, S. Understanding Synthetic Aperture Radar images. Raleigh: SciTech

Publishing, 2004. ISBN 1-891121-31-6.

PEREIRA, L. O.; FREITAS, C. C.; SANT’ANNA, S. J. S.; REIS, M. S. ALOS/PALSAR data evaluation

for land use and land cover mapping in the Amazon region. IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, v. 9, n. 12, p. 5413–5423, 2016. DOI:

10.1109/JSTARS.2016.2622481.

PEREIRA, L. O.; FREITAS, C. C.; SANT´ANNA, S. J. S.; REIS, M. S. Evaluation of optical and

radar images integration methods for LULC classification in Amazon region. IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, v. 11, n. 9, p. 3062–

3074, 2018.

QUEIROZ, V. D. B. Classificação de trajetórias de cobertura da terra utilizando uma abordagem

de máximo a posteriori composto em imagens de multissensores. 2025. Diss. (Mestrado)

– Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos. Disponível em:

<http://urlib.net/ibi/8JMKD3MGP3W34T/4BRJ5G5>.

QUEVEDO, R. P. Do land use and land cover and spatial heterogeneity influence on landslide

occurrence? An analysis of susceptibility. 2023. F. 2023. 193. Doutorado em Sensoriamento

Remoto – Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos. Disponível

em: <http://urlib.net/ibi/8JMKD3MGP3W34T/49AT9R8>.

REIS, M. S. Detection and analysis of forest regeneration trajectories in the lower Tapajós

region. 2022. F. 220. Tese (Doutorado em Ciência do Sistema Terrestre) – Instituto Nacional

de Pesquisas Espaciais (INPE), São José dos Campos. Disponível em: <http://urlib.net/ibi/

8JMKD3MGP3W34T/47E2TRB>.

REIS, M. S.; BARROS, L. S.; RODRIGUES NETO, M. R.; MORAES, D. R. V.; MOREIRA, N. A. P.;

ALVES, G. M. R.; ADORNO, B. V.; MESSIAS, C. G.; DUTRA, L. V.; RENNÓ’, C. D.;

SANT’ANNA, S. J. S.; ESCADA, M. I. S. Assessing interpreter’s disagreements in land

cover reference data collection from historical Landsat time series in Amazon. International Journal of Remote Sensing, Taylor & Francis, v. 45, n. 15, p. 5192–5223, 2024. DOI:

10.1080/01431161.2024.2373340.

REIS, M. S.; DUTRA, L. V.; ESCADA, M. I. S. Simultaneous multi-source and multi-temporal

land cover classification using a compound maximum likelihood classifier. GEOINFO, v. 18,

p. 74–85, 2017.

REIS, M. S.; DUTRA, L. V.; ESCADA, M. I. S.; SANT’ANNA, S. J. S. Avoiding invalid transitions in

land cover trajectory classification with a Compound Maximum a Posteriori approach. IEEE

Access, IEEE, v. 8, p. 98787–98799, 2020b. DOI: 10.1109/ACCESS.2020.2997019.

REIS, M. S.; DUTRA, L. V. D.; SANT’ANNA, S. J. S.; ESCADA, M. I. S. Multi-source change detection

with PALSAR data in the Southern of Pará state in the Brazilian Amazon. International Journal

of Applied Earth Observation and Geoinformation, v. 84, p. 101945, 2020a. ISSN 1569-8432.

DOI: https://doi.org/10.1016/j.jag.2019.101945.

REIS, M. S.; ESCADA, M. I. S.; DUTRA, L. V.; SANT’ANNA, S. J. S.; VOGT, N. D. Towards a

reproducible LULC hierarchical class legend for use in the southwest of Pará state, Brazil:

A comparison with Remote Sensing data-driven hierarchies. Land, v. 7, n. 2, 2018. ISSN

2073-445X. DOI: 10.3390/land7020065. Disponível em: <https://www.mdpi.com/2073-

445X/7/2/65>.

RICHARDS, J. A. Remote sensing digital image analysis: an introduction. Berlin: Springer, 2022.

v. 6, p. 567. ISBN 978-3-030-82326-9.

. Remote Sensing with imaging Radar. Berlin: Springer, 2009. v. 1, p. 361. ISBN 978-3-

642-02019-3. DOI: 10.1007/978-3-642-02020-9.

SAGRILLO, M.; GUERRA, R. R.; BAYER, F. M.; MACHADO, R. A new probability distribution for

SAR image modeling. Remote Sensing, v. 14, n. 12, 2022. ISSN 2072-4292.

SANT’ANNA, Sidnei Joao Siqueira; BRAGA, Bruna Cristina; OLIVEIRA, Jony Martins; OLIVEIRA,

Maria Antônia Falcão; REIS, Mariane Souza; MOREIRA, Noeli Aline Particcelli; ALBUQUERQUE,

Paulo Cesar Gurgel. Field data from the Tapajós region - August-September of

2016. [S.l.: s.n.], 2016.

SCHOWENGERDT, A. Robert. Remote sensing: models and methods for image processing. 3. ed.

Burlington: Academic Press, 2007. P. 515. ISBN 978-0-12-369407-2.

SERVELLO, E. L. Dados polarimétricos do RADARSAT-2 (banda C) na discriminação de uso e

cobertura da terra na região da Floresta Nacional do Tapajós, 2010.

SHIMADA, M.; ISOGUCHI, O.; TADONO, T.; ISONO, K. PALSAR radiometric and geometric

calibration. IEEE Transactions on Geoscience and Remote Sensing, v. 47, n. 12, p. 3915–

3932, 2009. DOI: 10.1109/TGRS.2009.2023909.

SMIRNOV, N. On the estimation of discrepancy between empirical curves of distribution for two

independent samples. Bulletin Mathématique de LUniversité de Moscow, v. 2, n. 2, p. 3–11,

1939.

THEODORIDIS, S.; KOUTROUMBAS, K. Pattern recognition. 4. ed. San Diego: Academic Press,

2009. ISBN 978-1-59749-272-0.

TORRES, L. J. T. M. Um novo algoritmo para filtragem de speckle em imagens SAR de intensidade

baseado em distâncias estocásticas. 2012. F. 2012. 73. Mestrado em Modelagem Computacional

de Conhecimento – Universidade Federal de Alagoas (UFAL), Maceió. Disponível em:

<http://www.repositorio.ufal.br/jspui/handle/riufal/1829>.

TURNER, B.; MEYER, W. Global land-use and land-cover change: an overview. In: MEYER, W. B.;

TURNER, B. L. (Ed.). Changes in land use and land cover: a global perspective. Cambridge:

Cambridge University Press, 1994. Total volume: 537 p.

VECI, L. ALOS PALSAR Orthorectification Tutorial. [S.l.], 2015. Issued March 2015; Updated

August 2016. Disponível em: <https://step.esa.int/docs/tutorials/ALOS%20PALSAR%

20Orthorectification%20Tutorial.pdf>.

VELOSO, H. P.; RANGEL FILHO, A. L. R.; LIMA, J. C. A. Classificação da vegetação brasileira,

adaptada a um sistema universal. Rio de Janeiro: IBGE, 1991. P. 124. ISBN 85-240-0384-7.

WARD JR, J. H. Hierarchical grouping to optimize an objective function. Journal of the American

Statistical Association, Taylor & Francis, v. 58, n. 301, p. 236–244, 1963. DOI: 10.1080/

01621459.1963.10500845.

WOODHOUSE, I. H. Introduction to microwave Remote Sensing. Boca Raton: CRC press Taylor &

Francis, 2006. P. 370. ISBN 0-415-27123-1.

WRIGHT, P. A.;MEADOWS, P. J.;MACK, G.; MIRANDA,N.; LAVALLE, M. ADEN ALOS PALSAR

product verification. In: ALOS PI 2008 SYMPOSIUM, 2008, Rhodes. PROCEEDINGS...

[S.l.: s.n.], 2009. Disponível em: <https://earth.esa.int/eogateway/documents/20142/37627/

ALOS-PI-Symposium-PALSAR-Verification.pdf>.

WULDER, M. A; HILKER, T.; WHITE, J. C.; COOPS, N. C.; MASEK, J. G.; PFLUGMACHER, D.;

CREVIER, Y. Virtual constellations for global terrestrial monitoring. Remote Sensing of

Environment, Elsevier, v. 170, p. 62–76, 2015.

YANASSE, C. C. F. Statistical analysis of Synthetic Aperture Radar images and its applications

to system analysis and change detection. 1991. F. 1991. 298. Doutorado em Probabilidade e

Estatística – University of Sheffield, Sheffield.

YANASSE, C. S. F.; SANT’ANNA, S. J. S.; FRERY, A. C.; RENNÓ, C. D.; SOARES, J. V.;

LUCKMAN, A. J. Exploratory study of the relationship between tropical forest regeneration

stages and SIR-C L and C data. Remote Sensing of Environment, Elsevier, v. 59, n. 2,

p. 180–190, 1997. DOI: 10.1016/s0034-4257(96)00149-6.

YUE, D. X.; XU, F.; FRERY, A. C.; JIN, Y. Q. SAR image statistical modeling part I: single-pixel

statistical models. IEEE Geoscience and Remote Sensing Magazine, v. 9, n. 1, p. 82–114,

2021.

Similar Articles

You may also start an advanced similarity search for this article.