Syn-SC: Generating High-Volume Synthetic Point Data with Target Continuity and Smoothness
Conteúdo do artigo principal
Resumo
When point data is aggregated and depicted on maps, the choice of thematic mapping technique depends on the cartographer's skill and the spatial structure of the data. MacEachren and DiBiase (1991) argued that two structural variables deserve explicit attention: continuity (the proportion of space occupied by events) and smoothness (the degree of variation between neighbouring locations). However, empirical studies seldom explicitly isolate these variables because real-world datasets rarely span a convenient range of values. Syn-SC closes this gap; it is a self-contained QGIS 3 Processing plug-in which synthesizes high-volume point datasets, and the continuity and smoothness of these can be defined independently. The Scale Assistant tool tessellates any area of interest with size-adaptive hexagons and reports a two-value smoothness window — floor and ceiling — defined by the binary extreme levels 1 and 100. A rule-based dispatcher then selects one of three generative solvers: an exhaustive brute-force solver for small grids of up to 16 cells, a checkerboard heuristic for large grids, and an iterative optimizer that rapidly converges whenever the requested smoothness lies within the reported window or below. Benchmarks demonstrate that Syn-SC matches the requested continuity precisely, achieves smoothness targets within ±1 percentage point and generates sets approaching one million points in seconds. Syn-SC, therefore, provides cartographers, usability researchers, and AI developers with shareable, perceptually parameterised point datasets that were previously unavailable.
Downloads
Detalhes do artigo
Seção

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Como Citar
Referências
Arnold, N. D., Jenny, B., & White, D. (2017). Automation and evaluation of graduated dot maps. International Journal of Geographical Information Science, 31(12), 2524–2542. https://doi.org/10.1080/13658816.2017.1359747
Campos, R. G. de, Paiva, C., Bravo, J. V. M., & Camboim, S. P. (2021). A proposition to define boundaries based on the smoothness and the continuity of voluminous point data phenomena. Abstracts of the ICA, 3, 1–2. https://doi.org/10.5194/ica-abs-3-42-2021
Carr, D. B., Olsen, A. R., & White, D. (1992). Hexagon Mosaic Maps for Display of Univariate and Bivariate Geographical Data. Cartography and Geographic Information Systems, 19(4), 228–236. https://doi.org/10.1559/152304092783721231
Dirrler, M., Dörr, C., & Schlather, M. (2020). A generalization of Matérn hard-core processes with applications to max-stable processes. Journal of Applied Probability, 57(4), 1298–1312. https://doi.org/10.1017/jpr.2020.66
Elzakker, C. P. J. M. van, & Griffin, A. L. (2013). Focus on geoinformation users: Cognitive and use/user issues in contemporary cartography. GIM International, 27(8), 20–23.
Flannery, J. J. (1971). The relative effectiveness of some common graduated point symbols in the presentation of quantitative data. Cartographica, 8(2), 96–109. https://doi.org/10.3138/J647-1776-745H-3667
Gorry, P., & Mooney, P. (2025). RADIAN – A tool for generating synthetic spatial data for use in teaching and learning. Cartography and Geographic Information Science, 52(3), 314–330. https://doi.org/10.1080/15230406.2024.2377981
Hermes, T. B., & Poulsen, C. N. (2012). Spatial microsimulation for the generation of synthetic populations: A review. Journal of Geographical Systems, 14(4), 437–467. https://doi.org/10.1007/s10109-012-0164-8
Kawakami, Y., Yuniar, S., & Ma, K.-L. (2024). HexTiles and Semantic Icons for MAUP-Aware Multivariate Geospatial Visualizations (arXiv:2407.16897). arXiv. https://doi.org/10.48550/arXiv.2407.16897
MacEachren, A. M. (1992). Visualizing Uncertain Information. Cartographic Perspectives, 13, Artigo 13. https://doi.org/10.14714/CP13.1000
MacEachren, A. M., & DiBiase, D. (1991). Animated Maps of Aggregate Data: Conceptual and Practical Problems. Cartography and Geographic Information Systems, 18(4), 221–229. https://doi.org/10.1559/152304091783786790
Mannino, M., & Abouzied, A. (2019). Is this Real? Generating Synthetic Data that Looks Real. Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, 549–561. https://doi.org/10.1145/3332165.3347866
Montello, D. R. (2002). Cognitive research in GIScience: The role of user-centered design and user studies. Transactions in GIS, 6(1), 1–11. https://doi.org/10.1111/1467-9671.00091
Provin, R. W. (1977). The Perception of Numerousness on Dot Maps. The American Cartographer, 4(2), 111–125. https://doi.org/10.1559/152304077784080374
Quick, H., & Waller, L. A. (2018). Using spatiotemporal models to generate synthetic data for public use. Spatial and Spatio-temporal Epidemiology, 27, 37–45. https://doi.org/10.1016/j.sste.2018.08.004
Raghunathan, T. E., Reiter, J. P., & Rubin, D. B. (2003). Multiple imputation for statistical disclosure limitation. Journal of official statistics, 19(1), 1.
Robinson, A. C., Demšar, U., Moore, A. B., Buckley, A., Jiang, B., Field, K., Kraak, M. J., Camboim, S. P., & Sluter, C. R. (2017). Geospatial big data and cartography: Research challenges and opportunities for making maps that matter. International Journal of Cartography, 3(sup1), 32–60. https://doi.org/10.1080/23729333.2016.1278151
Robinson, A. C., Kettunen, P., Delazari, L., & Çöltekin, A. (2023). New directions for the state of the art and science in Cartography. International Journal of Cartography, 9(2), 143–149. https://doi.org/10.1080/23729333.2023.2216334
Roth, R. E., Çöltekin, A., Delazari, L., Filho, H. F., Griffin, A., Hall, A., Korpi, J., Lokka, I., Mendonça, A., Ooms, K., & Elzakker, C. P. J. M. van. (2017). User studies in cartography: Opportunities for empirical research on interactive maps and visualizations. International Journal of Cartography, 3(sup1), 61–89. https://doi.org/10.1080/23729333.2017.1288534
Roth, R. E., Kelly, M., Underwood, N., Lally, N., Vincent, K., & Sack, C. (2019). Interactive & Multiscale Thematic Maps: A Preliminary Study. Abstracts of the ICA, 1, 1–2. https://doi.org/10.5194/ica-abs-1-315-2019
Roth, R. E., Ross, K. S., & MacEachren, A. M. (2015). User-Centered Design for Interactive Maps: A Case Study in Crime Analysis. ISPRS International Journal of Geo-Information, 4(1), Artigo 1. https://doi.org/10.3390/ijgi4010262
Slocum, T. A. (1983). Predicting Visual Clusters on Graduated Circle Maps. The American Cartographer, 10(1), 59–72. https://doi.org/10.1559/152304083783948168
Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2022). Thematic Cartography and Geovisualization (4ª ed.). CRC Press.
Słomska-Przech, K., & Gołębiowska, I. M. (2021). Do Different Map Types Support Map Reading Equally? Comparing Choropleth, Graduated Symbols, and Isoline Maps for Map Use Tasks. ISPRS International Journal of Geo-Information, 10(2), Artigo 2. https://doi.org/10.3390/ijgi10020069
Vu, T., Migliorini, S., Eldawy, A., & Belussi, A. (2022). Spatial Data Generators. In: Spatial Gems, Volume 1 (1ª ed., Vol. 46, p. 13–24). Association for Computing Machinery. https://doi.org/10.1145/3548732.3548736
Wallner, G., & Kriglstein, S. (2020). Multivariate Visualization of Game Metrics: An Evaluation of Hexbin Maps. Proceedings of the Annual Symposium on Computer-Human Interaction in Play, 572–584. https://doi.org/10.1145/3410404.3414233