Rádio Ocultação GNSS: Revisão Teórica, Missões e Produtos

Conteúdo do artigo principal

Gabriel Oliveira Jerez
https://orcid.org/0000-0001-6893-2144
Daniele Barroca Marra Alves
https://orcid.org/0000-0002-9033-8499
Raphael Silva Nespolo
https://orcid.org/0000-0003-3696-1359
João Francisco Galera Monico
https://orcid.org/0000-0003-4101-9261
Manuel Hernández-Pajares
https://orcid.org/0000-0002-9687-5850

Resumo

A rádio ocultação (RO) começou a ser utilizada para a sondagem da atmosfera de outros planetas a partir da década de 1960. Com o desenvolvimento do Global Navigation Satellite System (GNSS) e de missões com satélites de baixa órbita (Low Earth Orbit - LEO) surgiu a possibilidade de investigações da atmosfera terrestre com a aplicação da RO-GNSS. Dos satélites transmissores GNSS até os receptores instalados nos satélites LEO, os sinais propagados sofrem diferentes tipos de influência da atmosfera. O sinal transmitido é refratado e, com isso, pode ser coletado pelo receptor embarcado no LEO, apesar da obstrução pela Terra. Essa geometria possibilita o cálculo dos índices de refração, os quais possuem informações da composição da atmosfera terrestre. Entre os perfis obtidos a partir do índice de refração, destacam-se os de temperatura, pressão e densidade de elétrons. No presente trabalho é realizada uma revisão teórica da técnica de RO-GNSS, com o intuito de apresentar a técnica e seu potencial a pesquisadores de diversas áreas que tenham possibilidade de utilizá-la. Primeiramente é apresentado um breve histórico do desenvolvimento da técnica, bem como as principais missões relacionadas ao tema, incluindo a situação de missões atualmente em operação e algumas perspectivas futuras. Além disso, são apresentados os principais elementos envolvidos na geometria da ocultação, bem como os principais conceitos e formulações para a obtenção dos perfis. Por fim, alguns produtos provenientes de missões de RO-GNSS são apresentados e analisados.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
JEREZ, G. O.; ALVES, D. B. M.; NESPOLO, R. S.; MONICO, J. F. G.; HERNÁNDEZ-PAJARES, M. Rádio Ocultação GNSS: Revisão Teórica, Missões e Produtos. Revista Brasileira de Cartografia, [S. l.], v. 74, n. 4, p. 943–967, 2022. DOI: 10.14393/rbcv74n4-63973. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/63973. Acesso em: 14 set. 2024.
Seção
Artigos de Revisão

Referências

AA, E.; LIU, S.; HUANG, W.; SHI, L.; GONG, J.; CHEN, Y.; LI, J. Regional 3‐D ionospheric electron density specification on the basis of data assimilation of ground‐based GNSS and radio occultation data. Space Weather, v. 14, n. 6, p. 433-448, 2016. DOI. 10.1002/2016SW001363.

AGUIAR, C. R.; KOZELINSKI, A. Mapas de TEC IONEX em tempo real gerados pelo modelo GIB (Grade Ionosférica Brasileira). Revista Brasileira de Cartografia, v. 67, n. 8, p. 1569-1585, 2015.

ANTHES, R.; SJOBERG, J.; FENG, X.; SYNDERGAARD, S. Comparison of COSMIC and COSMIC-2 Radio Occultation Refractivity and Bending Angle Uncertainties in August 2006 and 2021. Atmosphere, v. 13, n. 5, p. 790, 2022. DOI. 10.3390/atmos13050790.

AHMAD, B.; TYLER, G. L. Systematic errors in atmospheric profiles obtained from Abelian inversion of radio occultation data: Effects of large‐scale horizontal gradients. Journal of Geophysical Research: Atmospheres, v. 104, n. D4, p. 3971-3992, 1999. DOI. 10.1029/1998JD200102.

ANGLING, M. J.; CANNON, P. S. Assimilation of radio occultation measurements into background ionospheric models. Radio Science, v. 39, n.1, p. 1-11, 2004. DOI. 10.1029/2002RS002819.

ANTHES, R. A.; BERNHARDT, P. A.; CHEN, Y.; CUCURULL, L.; DYMOND, K. F.; ECTOR, D.; HO, S.; HUNT, D.; KUO, Y.; LIU, H.; MANNING, K.; MCCORMICK, C.; MEEHAN, T. K.; RANDEL, W. J.; ROCKEN, C.; SCHREINER, W. S.; SOKOLOVSKIY, S. V.; SYNDERGAARD, S.; THOMPSON, D. C.; TRENBERTH, K. E.; WEE, T.; YEN, N. L.; ZENG, Z. The COSMIC/FORMOSAT-3 mission: Early results. Bulletin of the American Meteorological Society, v. 89, n. 3, p. 313-334, 2008. DOI. 10.1175/BAMS-89-3-313.

APARICIO, J. M.; DEBLONDE, G. Impact of the Assimilation of CHAMP Refractivity Profiles on Environment Canada Global Forecasts. Monthly Weather Review, v. 136, n. 1, p. 257–275, 2008. DOI. 10.1175/2007mwr1951.1.

BERGSSON, B.; SYNDERGAARD, S. Global Temporal and Spatial Variations of Ionospheric Sporadic‐E Derived From Radio Occultation Measurements. Journal of Geophysical Research: Space Physics, v. 127, n. 4, e2022JA030296, 2022. DOI. 10.1029/2022JA030296.

BEYERLE, G. Simulating GPS radio occultation events. Scientific Report 05-09, Danish Meteorological Institute, 2005. Disponível em: < https://preop.romsaf.org/Publications/reports/sr05-09.pdf >. Acesso em out. 2021.

BORN, M.; WOLF, E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 6ª ed. Oxford: Pergamon Press, 1980.

BOWLER, N. E. An assessment of GNSS radio occultation data produced by Spire. Quarterly Journal of the Royal Meteorological Society, v. 146, n. 733, p. 3772-3788, 2020. DOI. 10.1002/qj.3872.

BRACEWELL, R. N. The Fourier transform and its applications. New York: McGraw-Hill, 1986.

BUSINGER, S.; CHISWELL, S. R.; BEVIS, M.; DUAN, J.; ANTHES, R. A.; ROCKEN, C.; WARE, R. H.; EXNER, M.; VANHOVE, T.; SOLHEIM, F. S. The promise of GPS in atmospheric monitoring. Bulletin of the American Meteorological Society, v. 77, n. 1, p. 5-18, 1996. DOI. 10.1175/1520-0477(1996)077<0005:TPOGIA>2.0.CO;2.

COSSAVELLA, F.; HERMAN, J.; HOFFMANN, L.; FISCHER, D.; SAVE, H.; SCHLEPP, B.; USBECK, T. Attitude Control on GRACE Follow-On: Experiences from the First Years in Orbit. In: CRUZEN, C.; SCHMIDHUBER, M.; LEE, Y. Space Operations: Beyond Boundaries to Human Endeavours. 1ª ed. Londres: Springer Cham, 2022. p. 493-517.

COSMIC DATA ANALISYS AND ARCHIVE CENTER (CDAAC). General Documentation about CDAAC Data. Disponível em: <https://cdaac-www.cosmic.ucar.edu/cdaac/doc/overview.html>. Acesso em: ago. 2021.

CHANG, H.; LEE, J., YOON, H.; MORTON, Y.; SALTMAN, A. Performance assessment of radio occultation data from GeoOptics by comparing with COSMIC data. Earth, Planets and Space, v. 74, n. 1, p. 1-17, 2022. DOI. 10.1186/s40623-022-01667-6.

CHANG, C. C.; YANG, S. C. Impact of assimilating Formosat-7/COSMIC-II GNSS radio occultation data on heavy rainfall prediction in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, v. 33, n. 1, p. 1-24, 2022. DOI. 10.1007/s44195-022-00004-4.

CHEN, Y.; SHAO, X.; CAO, C.; HO, S. P. Simultaneous Radio Occultation Predictions for Inter-Satellite Comparison of Bending Angle Profiles from COSMIC-2 and GeoOptics. Remote Sensing, v. 13, n. 18, p. 3644, 2021. DOI. 10.3390/rs13183644.

CONSTELLATION OBSERVING SYSTEM FOR METEOROLOGY, IONOSPHERE AND CLIMATE (COSMIC). COSMIC-2. Disponível em: <https://www.cosmic.ucar.edu/cosmic2/index.html>. Acesso em: fev. 2021a.

CONSTELLATION OBSERVING SYSTEM FOR METEOROLOGY, IONOSPHERE AND CLIMATE (COSMIC). Data Products. Disponível em: <https://www.cosmic.ucar.edu/what-we-offer/data-products-support/>. Acesso em abr. 2021b.

CUCURULL, L.; DERBER, J. C.; TREADON, R.; PURSER, R. J. Assimilation of Global Positioning System Radio Occultation Observations into NCEP’s Global Data Assimilation System. Monthly Weather Review, v. 135, n. 9, p. 3174–3193, 2007. DOI. 10.1175/mwr3461.1.

ELGERED, G.; WICKERT, J. Monitoring of the Neutral Atmosphere. In: TEUNISSEN, P., MONTENBRUCK, O. (Eds). Springer Handbook of Global Navigation Satellite Systems. Springer, 2017. p. 1109-1138.

EO PORTAL DIRECTORY. FormoSat-7 / COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere and Climate). Disponível em: <https://directory.eoportal.org/web/eoportal/satellite-missions/f/formosat-7>. Acesso em: fev. 2019a.

EO PORTAL DIRECTORY. GRACE-FO (Gravity Recovery And Climate Experiment - Follow-on). Disponível em: <https://earth.esa.int/web/eoportal/satellite-missions/g/grace-fo>. Acesso em: fev. 2019b.

EUROPEAN ORGANISATION FOR THE EXPLOITATION OF METEOROLOGICAL SATELLITES (EUMETSAT). Metop series. Disponível em: <https://www.eumetsat.int/our-satellites/metop-series?sjid=future>. Acesso em: ago. 2021.

FISCHBACH, F. F. A satellite method for temperature and pressure below 24 km. Bulletin American Meteorological Society, v. 9, p. 528-532, 1965. DOI. https://doi.org/10.1175/1520-0477-46.9.528.

FJELDBO, G.; ESHLEMAN, V.R. Atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment. Radio Science, v. 4, n. 10, p. 879–897, 1969. DOI. 10.1029/RS004i010p00879.

FJELDBO, G.; ESHLEMAN, V.R. The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planetary and Space Science, v. 16, n. 8, p. 1035–1059, 1968. DOI. 10.1016/0032-0633(68)90020-2.

FJELDBO, G.; ESHLEMAN, V.R.; GARRIOTT, O. K.; SMITH, F. L. The two-frequecy bistatic Radar-Occultation method for study of planetary ionospheres. Journal of Geophysical Research, v. 70, n. 15, p. 3701–3710, 1965. DOI. 10.1029/JZ070i015p03701.

FJELDBO, G.; KLIORE, A.; ESHLEMAN, V.R. The neutral atmosphere of Venus as studied with the Mariner V Radio Occultation Experiments. The Astronomical Journal, v. 76, n. 2, p. 123–140, 1971. DOI. 10.1086/111096.

FU, N.; JIANG, M.; LI, F.; GUO, P.; HOU, C.; WU, M.; KAN, L. Assessment of ZTD Derived from COSMIC Occultation Data with ECWMF, Radiosondes, and GNSS. Sensors, v. 22, n. 14, p. 5209, 2022. DOI. 10.3390/s22145209.

GARCIA-FERNANDEZ, M. Contributions to the 3D Ionospheric Sounding with GPS data. 2004. Tese (Doutorado em Ciência Espacial e Tecnologia) - Universitat Politècnica de Catalunya, Espanha. 2004.

GUNTER’S SPACE PAGE. FORMOSAT-7/COSMIC-2. Disponível em: <https://space.skyrocket.de/doc_sdat/formosat-7-cosmic-2.htm>. Acesso em: fev. 2019.

HAJJ, G.; LEE, L.; PI, X.; ROMANS, L.; SCHREINER, W.; STRAUS, P.; WANG, C. COSMIC GPS ionospheric sensing and space weather. Terrestrial atmospheric and oceanic sciences, v. 11, n. 1, p. 235-272, 2000.

HAJJ, G. A.; ROMANS, L. J. Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment. Radio Science, v. 33, n. 1, p. 175-190, 1998. DOI. 10.1029/97RS03183.

HAJJ, G.A.; KURSINSKI, E.R.; ROMANS, L.J.; BERTIGER, W.I.; LEROY, S.S. A technical description of atmospheric sounding by GPS occultation. Journal of Atmospheric and Solar-Terrestrial Physics, v. 64, n. 4, p. 451-469, 2002. DOI. 10.1016/S1364-6826(01)00114-6.

HE, W.; HO, S. P.; CHEN, H.; ZHOU, X.; HUNT, D.; KUO, Y. H. Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophysical Research Letters, v. 36, n. 17, 2009. DOI. 10.1029/2009GL038712.

HEALY, S. B.; THÉPAUT, J.‐N. Assimilation experiments with CHAMP GPS radio occultation measurements. Quarterly Journal of the Royal Meteorological Society, v. 132, n. 615, p. 605-623, 2006. DOI. 10.1256/qj.04.182.

HEALY, S. B.; WICKERT, J.; MICHALAK, G.; SCHMIDT, T.; BEYERLE, G. Combined forecast impact of GRACE‐A and CHAMP GPS radio occultation bending angle profiles. Atmospheric Science Letters, v. 8, n. 2, p. 43-50, 2007. DOI. 10.1002/asl.149.

HOCKE, K. Inversion of GPS meteorology data. In: Annales Geophysicae. Springer-Verlag, 1997. p. 443-450.

HOLZSCHUH, M. L.; SAPUCCI, L. F.; MONICO, J. F. G. Avaliação de perfis atmosféricos de rádio ocultação GPS do satélite CHAMP sobre a América do Sul. Revista Brasileira de Meteorologia, 25, p. 147-155, 2010. DOI. 10.1590/S0102-77862010000200001.

HSU, C.‐T.; MATSUO, T.; LIU, J.‐Y. Impact of Assimilating the FORMOSAT‐3/COSMIC and FORMOSAT‐7/COSMIC‐2 RO Data on the Midlatitude and Low‐Latitude Ionospheric Specification. Earth and Space Science, v. 5, n. 12, p. 875-890. 2018. DOI. 10.1029/2018EA000447.

JAKOWSKI, N.; WEHRENPFENNIG; A.; HEISE, S.; REIGBER, C.; LÜHR, H.; GRUNWALDT, L.; MEEHAN, T. K. GPS radio occultation measurements of the ionosphere from CHAMP: Early results. Geophysical Research Letters, v. 29, n. 10, 2002. DOI. 10.1029/2001GL014364.

JEREZ, G. O. Estimativa e análise de perfis de densidade de elétrons para a região brasileira: integração de rádio ocultação GNSS e de informações ionosféricas provenientes de estações GNSS terrestres. 2021. 189p. Tese (Doutorado em Ciências Cartográficas) – Universidade Estadual Paulista, Presidente Prudente. 2021.

KLIORE, A. J.; FJELDBO, G.; SEIDEL, B. L.; SWEETNAM, D. N.; SESPLAUKIS, T. T.; WOICESHYN, P. M.; RASOOL, S. I. The atmosphere of Io from Pioneer 10 radio occultation measurements. Icarus, v. 24, n. 4, p. 407-410, 1975. DOI. 10.1016/0019-1035(75)90057-3.

KLIORE, A. J.; PATEL, I. R.; LINDAL, G. F.; SWEETNAM, D. N.; HOTZ, H. B.; WAITE JR, J. H.; MCDONOUGH, T. R. Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. Journal of Geophysical Research: Space Physics, v. 85, n. A11, p. 5857-5870, 1980. DOI. 10.1029/JA085iA11p05857.

KURSINSKI, E. R. The GPS radio occultation concept: theoretical performance and initial results. 1997. Tese (Doutorado em Ciências Planetárias) – California Institute of Technology, Pasadena. 1997.

KURSINSKI, E. R. Weather & Space Weather RO Data from PlanetiQ Commercial GNSS RO. In: 6th ROM SAF Data User Workshop and 7th IROWG Workshop, 2019, Elsinore. Proceedings of the Joint 6th ROM SAF Data User Workshop and 7th IROWG Workshop, Elsinore: ROMSAF, 2019. p. 19-25.

KURSINSKI, E. R.; BRANDMEYER, J.; BOTMICK, A.; LEROY, S. S. Initial Atmosphere and Ionosphere Results from PlanetiQ's First GNSS RO Satellite. In: AGU Fall Meeting, 2020, Online. AGU Fall Meeting Abstracts, Online: AGU, 2020, p. N029-05.

KURSINSKI, E. R.; HAJJ, G. A.; BERTIGER, W. I.; LEROY, S. S.; MEEHAN, T. K.; ROMANS, L. J.; SCHOFIELD, J. T.; MCCLEESE. D. J.; MELBOURNE, W. G.; THORNTON, C. L.; Y; YUNCK, T. P. EYRE, J. R.; NAGATANI, R. N. Initial results of radio occultation observations of Earth's atmosphere using the Global Positioning System. Science, v. 271, n. 5252, p. 1107-1110, 1996. DOI. 10.1126/science.271.5252.1107.

KURSINSKI, E.; HAJJ, G.; SCHOFIELD, J.; LINFIELD, R.; HARDY, K. Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres, v. 102, n. D19, p. 23429-23465, 1997. DOI. 10.1029/97JD01569.

KURSINSKI, E.R.; HAJJ, G.A.; LEROY, S.S.; HERMAN, B. The GPS Radio Occultation Technique. In: LEE, L.C.; ROCKEN, C.; KURSINSKI, R. Applications of Constellation: Observing System for Meteorology, Ionosphere & Climate. Hong Kong: Springer-Verlag, 2000.

LINDAL, G. F.; LYONS, J. R.; SWEETNAM, D. N.; ESHLEMAN, V. R.; HINSON, D. P.; TYLER, G. L. The atmosphere of Uranus: Results of radio occultation measurements with Voyager 2. Journal of Geophysical Research: Space Physics, v. 92, n. A13, p. 14987-15001, 1987. DOI. 10.1029/JA092iA13p14987.

LINDAL, G. F.; SWEETNAM, D. N.; ESHLEMAN, V. R. The atmosphere of Saturn-an analysis of the Voyager radio occultation measurements. The Astronomical Journal, v. 90, p. 1136-1146, 1985.

LUSIGNAN, B.; MODRELL, G.; MORRISON, A.; POMALAZA, J.; UNGAR, S. G. Sensing the Earth's atmosphere with occultation satellites. Proceedings of the IEEE, v. 57, n. 4, p. 458-467, 1969. DOI. 10.1109/PROC.1969.7000.

MANNUCCI, A. J.; AO, C. O.; YOUNG, L. E.; MEEHAN, T. K. Studying the atmosphere using global navigation satellites. Eos, Transactions American Geophysical Union, v. 95, n. 43, p. 389-391, 2014. DOI. 10.1002/2014EO430001.

McNAMARA, L. F. The ionosphere: communications, surveillance, and direction finding. Florida: Krieger Publishing Company, 1991.

MENZEL, D. H.; DE VAUCOULEURS, G. Results from the Occultation of Regulus by Venus, July 7, 1959. The Astronomical Journal, v. 65, p. 351, 1960.

MUNGUFENI, P.; RABIU, B. A.; OKOH, D.; JURUA, E. Characterisation of Total Electron Content over African region using Radio Occultation observations of COSMIC satellites. Advances in Space Research, v. 65, n.1, p. 19-29, 2020. DOI. 10.1016/j.asr.2019.08.009.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). NASA History: 45 Years Ago, Mariner 10 Off to Venus and Mercury. Disponível em: <https://www.nasa.gov/feature/45-years-ago-mariner-10-off-to-venus-and-mercury>. Acesso em: fev. 2019b.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION/JET PROPULSION LABORATORY (NASA/JPL). GRACE-FO. Disponível em: <https://www.jpl.nasa.gov/images/gracefo/20180430/PIA22440-16.jpg>. Acesso em: fev. 2019d.

NCAR & UCAR NEWS. After 14 years, first COSMIC satellite mission come to an end. Disponível em: < https://news.ucar.edu/132736/after-14-years-first-cosmic-satellite-mission-comes-end>. Acesso em: jun. 2020.

NIE, Y.; SHEN, Y.; CHEN, Q. Combination Analysis of Future Polar-Type Gravity Mission and GRACE Follow-On. Remote Sensing, v. 11, n. 2, p. 200, 2019. DOI. 10.3390/rs11020200.

OPPA. Office of Projects, Planning and Analysis: Metop-C. Disponível em: <https://www.nesdis.noaa.gov/OPPA/metopc.php>. Acesso em: Mar. 2019.

PHYSICAL OCEANOGRAPHY DISTRIBUTED ACTIVE ARCHIVE CENTER (PODAAC). GRACE-FO. Disponível em: <https://podaac.jpl.nasa.gov/GRACE-FO>. Acesso em: fev. 2019.

PROL, F. D. S.; HERNÁNDEZ‐PAJARES, M.; CAMARGO, P. D. O.; MUELLA, M. T. D. A. H. Spatial and temporal features of the topside ionospheric electron density by a new model based on GPS radio occultation data. Journal of Geophysical Research: Space Physics, v. 123, n. 3, p. 2104-2115, 2018a. DOI. 10.1002/2017JA024936.

PROL, F. S.; HERNÁNDEZ-PAJARES, M.; MUELLA, M. T. A. H.; CAMARGO, P. O. Tomographic imaging of ionospheric plasma bubbles based on GNSS and radio occultation measurements. Remote Sensing, v. 10, n. 10, p. 1529, 2018b. DOI. 10.3390/rs10101529.

PROL, F. S.; CAMARGO, P. O.; HERNÁNDEZ-PAJARES, M.; MUELLA, M. T. A. H. A new method for ionospheric tomography and its assessment by ionosonde electron density, GPS TEC, and single-frequency PPP. IEEE Transactions on Geoscience and Remote Sensing, v. 57, n. 5, p. 2571-2582, 2018c. DOI. 10.1109/TGRS.2018.2874974.

PROL, F. S.; SMIRNOV, A. G.; HOQUE, M. M.; SHPRITS, Y. Y. Combined model of topside ionosphere and plasmasphere derived from radio-occultation and Van Allen Probes data. Scientific Reports, v. 12, n.1, p. 1-11, 2022. DOI. 10.1038/s41598-022-13302-1.

SAPUCCI, L. F.; BASTARZ, C. F.; CERQUEIRA, F.; AVANÇO, L. A.; HERDIES, D. L. Impacto de perfis de rádio ocultação GNSS na qualidade das Previsões de tempo do CPTEC/INPE. Revista Brasileira de Meteorologia, v. 29, n. 4, p. 551-567, 2014. DOI. 10.1590/0102-778620140013.

SAPUCCI, L. F.; DINIZ, F. L.; BASTARZ, C. F.; AVANÇO, L. A. Inclusion of Global Navigation Satellite System radio occultation data into Center for Weather Forecast and Climate Studies Local Ensemble Transform Kalman Filter (LETKF) using the Radio Occultation Processing Package as an observation operator. Meteorological Applications, v. 23, n. 2, p. 328-338, 2016. DOI. 10.1002/met.1559.

SCHREINER, W. S.; WEISS, J. P.; ANTHES, R. A.; BRAUN, J.; CHU, V.; FONG, J.; ZENG, Z. COSMIC‐2 radio occultation constellation: First results. Geophysical Research Letters, v. 47, n. 4, 2020. DOI. 10.1029/2019GL086841.

SCHREINER, W.; ROCKEN, C.; SOKOLOVSKIY, S.; SYNDERGAARD, S.; HUNT, D. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission. Geophysical Research Letters, v. 34, n. 4, 2007. DOI. 10.1029/2006GL027557.

SCHREINER, W.; SOKOLOVSKIY, S.; ROCKEN, C.; HUNT, D. Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Science, v. 34, n. 4, p. 949-966, 1999. DOI. 10.1029/1999RS900034.

SUN, Y. Y.; CHEN, C. H.; LIN, C. Y. Detection of Vertical Changes in the Ionospheric Electron Density Structures by the Radio Occultation Technique Onboard the FORMOSAT-7/COSMIC2 Mission over the Eruption of the Tonga Underwater Volcano on 15 January 2022. Remote Sensing, v. 14, n. 17, p. 4266, 2022. DOI. 10.3390/rs14174266.

SYNDERGAARD, S. Retrieval analysis and methodologies in atmospheric limb sounding using the GNSS radio occultation technique. 1999. Tese (Doutorado em Ciências Naturais) – Danish Meteorological Institute, Copenhagen. 1999.

TSENG, T. P.; CHEN, S. Y.; CHEN, K. L.; HUANG, C. Y.; YEH, W. H. Determination of near real-time GNSS satellite clocks for the FORMOSAT-7/COSMIC-2 satellite mission. GPS Solutions, v. 22, n. 2, p. 47, 2018. DOI. 10.1007/s10291-018-0714-1.

WICKERT, J.; REIGBER, C.; BEYERLE, G.; KÖNIG, R.; MARQUARDT, C.; SCHMIDT, T.; SCHMIDT, T.; GRUNWALDT, L.; GALAS, R.; MEEHLAN, T. K.; MELBOURNE, W. G.; HOCKE, K. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophysical Research Letters, v. 28, n. 17, p. 3263-3266, 2001. DOI. 10.1029/2001GL013117.

VILKOV, I. A.; MATYUGOV, S. S.; YAKOVLEV, O. I. Scintillation and Absorption of Radio Waves in the Earth's Atmosphere in Radio Occultation Experiments on the Satellite-to-Satellite Link. Turkish Journal of Physics, v. 20, n. 8, p. 814-818, 1996.

YAKOVLEV, O. I.; VILKOV, I. A.; ZAKHAROV, A. I.; KUCHERYAVENKOVA, I. L.; KUCHERYAVENKOV, A. I. Frequency shift, time delay, and refraction of radio waves in eclipse experiments along satellite-to-satellite path. Journal of communications technology & electronics, v. 40, n. 12, p. 73-80, 1995.

YAKOVLEV, O. I.; MATYUGOV, S. S.; VILKOV, I. A.; ZAKHAROV, A. I.; KUCHERYAVENKOVA, I. L. Radio-wave phase and frequency fluctuations as observed in radio-eclipse experiments along a satellite-satellite link. Journal of communications technology & electronics, v. 41, n. 11, p. 993-998, 1996.

YOUNG, H; FREEDMAN, R. Física IV: Ótica e física moderna. São Paulo: PEARSON ADDISON Wesley, 2009.

YUE, X.; SCHREINER, W. S.; PEDATELLA, N.; ANTHES, R. A.; MANNUCCI, A. J.; STRAUS, P. R.; LIU, J. Y. Space weather observations by GNSS radio occultation: From FORMOSAT‐3/COSMIC to FORMOSAT‐7/COSMIC‐2. Space Weather, v. 12, n. 11, p. 616-621, 2014. DOI. 10.1002/2014SW001133.

ZENG, Z.; BURNS, A.; WANG, W.; LEI, J.; SOLOMON, S.; SYNDERGAARD, S.; QIAN, L.; KUO, Y. H. Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM. Journal of Geophysical Research: Space Physics, v. 113, n. A7, 2008. DOI. 10.1029/2007JA012897.

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>