Perrin’s hyperbolic circular quaternions and Perrin’s hybridinomial numbers
DOI:
https://doi.org/10.14393/BEJOM-v3-n6-2022-65889Keywords:
Números hiperbólicos duais, Hibrinomiais, Quatérnios hiperbólicos circulares, Sequência de PerrinAbstract
Studies referring to linear and recurrent sequences are being carried out in the Pure Mathematics literature, thus expanding the universe of sequence evolution. With the study of Fibonacci’s hyperbolic circular quaternions, it was possible to define Perrin’s hy- perbolic circular quaternions for this research. In addition, Perrin’s hybrid numbers are introduced, based on Perrin’s hybrid and polynomial numbers.. Therefore, some algebraic properties of Perrin’s circular hyperbolic quaternions are studied, resulting in obtaining their respective generating function, Binet formula and matrix form.
Downloads
References
ALVES, F. R. V.; CATARINO, P. M. M. C.; VIEIRA, R. P. M.; MANGUEIRA, M. dos S. Teaching Recurrent Sequences in Brazil using Historical facts and graphicalillustrations,Acta Didactica Napocensia, vol. 13, n. 1, p. 87-104, 2020.
ALVES, F. R. V.; VIEIRA, R. P. M.; CATARINO, P. M. M. C. Visualizing the Newtons Fractal from the Recurring Linear Sequence with Google Colab: An Exampleof Brazil X Portugal Research, International Electronic Journal of Mathematics Education, vol. 15, n. 3, p. 1-19, 2020.
AYDIN, F. T. Circular-hyperbolic Fibonacci quaternions. Notes on Number Theory and Discrete Mathematics, vol. 26, n. 2, p. 167-176, 2020.
PENNESTRI, E.; STEFANELLI, R. Linear Algebra and Numerical Algorithms Using Dual Numbers. Multibody System Dynamics, vol. 18, n. 3, p. 323-344,2007.
CIHAN, A.; AZAK, A. Z.; GUNGOR, M. A.; TOSUN, M.V. A study of Dual Hyperbolic Fibonacci and Lucas numbers.An. St. Univ. Ovidius Constanta, vol. 27,n. 1, p. 35-48, 2019.
DATTOLI, G.; LICCIARDI, S.; PIDATELLA, R. M.; SABIA, E. Hybrid complex numbers: The matrix version. Adv. Appl. Clifford Algebras, vol. 28, n. 3, p. 58,2018.
HORZUM, T; KOCER, E. G. On some properties of Horadam polynomials. Inter-national Mathematical Forum, vol. 4, n.25, p. 1243-1252, 2009.
HAUKKANEN, P. A Note On Horadam?s Sequence.The Fibonacci Quart., vol.40, n. 4, p. 358-361, 2002.
JANCEWICZ, B. The extended Grassmann algebra of R3, in Clifford (Geometric) Algebras with Applications and Engineering. Birkhauser, Boston, p. 389-421, 1996.
KIZILATES, C. A note on Horadam hybrinomials. 2020010116 (doi:10.20944/preprints202001.0116.v1), p. 1-10, 2020.
KNUTH, D. E. The Art of Computer Programming. Addison-Wesley, Reading, MA, vol.3, 2nd edition, 417, 1998.
MANGUEIRA, M. et al. The hybrid numbers of Padovan and some identities.2020010116 . Annales Mathematicae Silesianae, vol. 34, n. 2, p. 256-267, 2020.
ORHAN, D.; HAMZA, M. On the Split (s,t)-Padovan and (s,t)-Perrin Quaternions. International Journal of Applied Mathematics and Informatics, vol. 13, p. 25-28, 2019.
OLIVEIRA, R. R. de O. Engenharia Didática sobre o Modelo de Comple-xificação da Sequência Generalizada de Fibonacci: Relações Recorrentes N-dimensionais e Representações Polinomiais e Matriciais. Mestrado Acadêmico em Ensino de Ciências e Matemática - Instituto Federal de Educação, Ciência e Tecnologia do Estado do Ceará (IFCE), 2018.
OZDEMIR, M.; HAMZA, M. Introduction to Hybrid Numbers. Adv. Appl. Clifford Algebras, vol. 28, n. 11, 2018.
SHOHAN, M. On grassmann’s products and clifford’s dual unit. International Symposium on History of Machines and Mechanisms Proceedings HMM, p.173-180, 2000.
SOBCZYK, G. The Hyperbolic Number Plane. The College Mathematics Journal,vol. 26, n. 4, p. 268-280, 1995.
SOYKAN, Y.; GOCEN, M. Properties of hyperbolic generalized Pell numbers. Notes on Number Theory and Discrete Mathematics, vol. 26, n. 4, p. 136-153, 2020.
SUGUMARAN, A.; RAJESH, K. Os números duais de Padovan. I International Journal of Pure and Applied Mathematics, vol. 114, n. 6, p. 131-137, 2017.
VIEIRA, R. P. M.; ALVES, F. R. V; CATARINO, P. M. C. A historic alanalys is of the padovan sequence. International Journal of Trends in Mathematics Education Research, vol. 3, n. 1, p. 8-12, 2020.
VIEIRA, R. P. M.; ALVES, F. R. V. Explorando a sequência de Padovan através de investigação histórica e abordagem epistemológica. Boletim GEPEM, vol. 74, p.161-169, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 BRAZILIAN ELECTRONIC JOURNAL OF MATHEMATICS
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The published articles are licensed under the CreativeCommons CCBY-NC/4.0 version. By submitting the material for publication, the authors automatically waive their copyright, agree to the editorial guidelines of the journal, and assume that the text has been properly reviewed. Simultaneous submission of articles to other journals is prohibited, as is the translation of articles published in the journal into another language without proper authorization.