Some results on periodic orbits of functions
DOI:
https://doi.org/10.14393/BEJOM-v6-2025-76862Keywords:
Periodic points, periodic orbits, Intermediate Value Theorem, Li-Yorke TheoremAbstract
In this work we will study several concepts related to real continuous functions in one variable, highlighting results related to fixed points, periodic orbits and the Li-Yorke Theorem. This last theorem establishes that if a real function applies the interval [a,b] to itself and has a point of period three, then it will have periodic points of any positive integer period. The results will be obtained mainly through applications of the Intermediate Value Theorem and Brouwer Fixed Point Theorem, two classic results in Mathematics, whose formulation and geometric interpretations are relatively simple and whose applications are quite relevant in several sciences.
Downloads
References
Huang, X. “From Intermediate Value Theorem To Chaos”. Em: Mathematics Magazine, JSTOR 65 (1992), pp. 309–311.
Li, T. e Yorke, J. “Period Three Implies Chaos”. Em: The American Mathematical Monthly 82 (1975), pp. 985–992.
Santana, G. O. “O Teorema de Sarkoviskii e seu Recíproco”. Dissertação (Mestrado Profissional em Matemática em Rede Nacional - Profmat). Ouro Preto: Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 2019, p. 61.
Pereira, R. O., Ferreira, W. M. e Martins, E. M. “A Equivalência entre o Teorema do Ponto Fixo de Brouwer e o Teorema do Valor Intermediário”. Em: Revista de Matemática de Ouro Preto 1 (2018), pp. 108–119.
Drumond, M. B. F. “Órbitas Periódicas de Funções e o Teorema de Li-Yorke: Uma Aplicação do Teorema do Valor Intermediário”. Dissertação (Mestrado Profissional em Matemática em Rede Nacional - Profmat). Ouro Preto: Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 2018, p. 50.
Lima, E. L. Curso de Análise - Vol. 1. Rio de Janeiro: Instituto de Matemática Pura e Aplicada, 1981.
Muniz Neto, A. C. Fundamentos de Cálculo. Coleção PROFMAT. Rio de Janeiro, Brasil: SBM, 2014.
Brás, J. C. T. “Dinâmica de Funções Contínuas na Reta”. Dissertação (Mestrado em Ensino de Matemática). Covilhã, Portugal: Universidade da Beira Interior, 2013.
Devaney, R. L. A First Course In Chaotic Dynamical Systems: Theory And Experiment. Avalon Publishing, 1992.
Burns, K. e Hasselblatt, B. The Sharkovsky’s Theorem: A Natural Direct Proof. http://emerald.tufts.edu/as/math/Preprints/BurnsHasselblattShort.pdf.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mayara Beatriz Ferreira Drumond , Wenderson Marques Ferreira, Eder Marinho Martins

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Articles published from 2025 onwards are licensed under the CC BY 4.0 license. By submitting material for publication, authors automatically agree to the journal’s editorial guidelines and affirm that the text has been properly reviewed. Simultaneous submission of articles to other journals is prohibited, as is the translation of articles published in this journal into another language without proper authorization.
- Articles published prior to 2025 are licensed under the CC BY-NC 4.0 license.






