Spatial Variables and Land Use Change Models: A Study on Conditioning Patterns of Natural Vegetation Suppression and Persistence
Conteúdo do artigo principal
Resumo
Land-use change models are formulated by identifying patterns of change and persistence. In modeling software, this step is usually performed by characterizing samples based on spatial variables. Despite the importance of this stage, the evaluation of the change and persistence patterns is often neglected by the scientific community. Thus, this study evaluated the conditioning factors of natural vegetation suppression and persistence in three study areas in different Brazilian biomes. The patterns were investigated for five different time periods, 1995 to 2000 (representing training) and 2000 to 2005, 2000 to 2010, 2000 to 2015 and 2000 to 2020 (representing extrapolation). The spatial variables used to identify the patterns were formulated to represent the environmental context of the training period (1995 to 2000). The method used to analyze the data was Violin Plot graphs. Among the modeling challenges investigated, the following stand out: 1) The ability of variables to explain changes; 2) The variation of change patterns across different time periods; and 3) The variation of change patterns across different study areas and within the same study area. Among the main findings, it was shown that: 1) within the set of analyzed variables, some had a greater ability to differentiate between vegetation suppression and persistence.; 2) the farther the extrapolation was from the training period, the lower the ability of the variables to differentiate the patterns; and 3) Vegetation suppression and persistence in different study areas were described by the variables in distinct ways. As possible recommendations, it is highlighted that modelers analyze patterns of change and persistence using statistical techniques.
Downloads
Detalhes do artigo
Seção

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Como Citar
Referências
Adhikari, S., & Southworth, J. (2012). Simulating Forest Cover Changes of Bannerghatta National Park Based on a CA-Markov Model: A Remote Sensing Approach. Remote Sensing, 4(10), 3215-3243. https://doi.org/10.3390/rs4103215.
Brito, M. M., Weber, E. J., Krigger, V. S., & Leitzke, F. P. (2017). Análise dos fatores condicionantes de movimentos de massa no município de porto alegre a partir de registros históricos. Revista Brasileira de Cartografia, 68(9), 1853-1872. http://dx.doi.org/10.14393/rbcv68n9-44450.
Chavan, S. B., Reddy, C. S., Rao, S. S., & Rao, K. K. (2018). Assessing and Predicting Decadal Forest Cover Changes and Forest Fragmentation in Kinnerasani Wildlife Sanctuary, Telangana, India. Journal of The Indian Society of Remote Sensing, 46(5), 729-735. http://dx.doi.org/10.1007/s12524-017-0739-x.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202. http://dx.doi.org/10.1016/j.rse.2017.06.031.
Hintze, J., & Nelson, R. (1998). Violin Plots: a box plot-density trace synergism. The American Statistician, 52(2), 181-184. http://dx.doi.org/10.1080/00031305.1998.10480559.
Instituto Brasileiro de Geografia e Estatística. (2024). Base Cartográfica Contínua. [Map]. https://geoftp.ibge.gov.br/cartas_e_mapas/bases_cartograficas_continuas/bc250/versao2023/shapefile/.
Kucsicsa, G., Popovici, E.-A., Bălteanu, D., Dumitraşcu, M., Grigorescu, I., & Mitrică, B. (2019). Assessing the Potential Future Forest-Cover Change in Romania, Predicted Using a Scenario-Based Modelling. Environmental Modeling & Assessment, 25(4), 471-491. http://dx.doi.org/10.1007/s10666-019-09686-6.
Lin, Y. P., Chu, H. J., Wu, C. F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling – a case study. International Journal of Geographical Information Science, 25(1), 65-87. http://dx.doi.org/10.1080/13658811003752332.
MapBiomas. (2023a). O Projeto. https://mapbiomas.org/o-projeto.
MapBiomas. (2023b). Análise de acurácia. https://brasil.mapbiomas.org/analise-de-acuracia/.
Microsoft Corporation. (2016). Microsoft Excel [Software] (Versão 16.0).
National Aeronautics and Space Administration. (2023) NASADEM: Creating a New NASA Digital Elevation Model and Associated Products. https://www.earthdata.nasa.gov/esds/competitive-programs/measures/nasadem.
Pontius, R. G., Huffaker, D., & Denman, K. (2004). Useful techniques of validation for spatially explicit land-change models. Ecological Modelling, 179(4), 445-461. http://dx.doi.org/10.1016/j.ecolmodel.2004.05.010.
Pontius, R. G., Krithivasan, R., Sauls, L., Yan, Y., & Zhang, Y. (2017). Methods to summarize change among land categories across time intervals. Journal Of Land Use Science, 12(4), 218-230. http://dx.doi.org/10.1080/1747423x.2017.1338768.
Pontius, R. G., Bilintoh, T., Oliveira, G., & Shimbo, J. (2023). Trajectories of losses and gains of soybean cultivation during multiple time intervals in western Bahia, Brazil. In: Proc. Space Week Nordeste 2023, Fortaleza, Ceará.
Sangermano, F., Eastman, J. R., & Zhu, H. (2010). Similarity Weighted Instance‐based Learning for the Generation of Transition Potentials in Land Use Change Modeling. Transactions In Gis, 14(5), 569-580. http://dx.doi.org/10.1111/j.1467-9671.2010.01226.x.
Soares-Filho, B. S., Cerqueira, G. C., & Pennachin, C. L. (2002). Dinamica—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecological Modelling, 154(3), 217-235. http://dx.doi.org/10.1016/s0304-3800(02)00059-5.
Souza Jr., C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M. de, Oliveira, S. W. de, Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., ... Azevedo, T. (2020). Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sensing, [S.L.], v. 12, n. 17, p. 2735. http://dx.doi.org/10.3390/rs12172735.
Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., Wu, S., & Wang, Y. (2023). SRplot: a free online platform for data visualization and graphing. Plos One, 18(11). http://dx.doi.org/10.1371/journal.pone.0294236.
Trigueiro, W. R., Nabout, J. C., & Tessarolo, G. (2020). Uncovering the spatial variability of recent deforestation drivers in the Brazilian Cerrado. Journal of Environmental Management, 275, 111243. http://dx.doi.org/10.1016/j.jenvman.2020.111243.
Turkey, J. (1977). Exploratory Data Analysis. Addison Wesley.
Van Vliet, J., Bregt, A. K., Brown, D. G., Van Delden, H., Heckbert, S., & Verburg, P. H. (2016). A review of current calibration and validation practices in land-change modeling. Environmental Modelling & Software, 82, 174-182. http://dx.doi.org/10.1016/j.envsoft.2016.04.017.
Voight, C., Hernandez-Aguilar, K., Garcia, C., & Gutierrez, S. (2019). Predictive Modeling of Future Forest Cover Change Patterns in Southern Belize. Remote Sensing, 11(7), 823. http://dx.doi.org/10.3390/rs11070823.