Spatial Modeling of Groundwater Potential in the North of Minas Gerais, Brazil: An Integrated Approach Using Machine Learning and Environmental Data
Conteúdo do artigo principal
Resumo
In arid and semi-arid regions, like the North of Minas Gerais (NMG) in Brazil, groundwater serves as a crucial resource. Due to the anticipated surge in demand for these resources, devising effective strategies for managing and analyzing water resources is vital. This study aims to model the spatial distribution of potential groundwater areas in the NMG by evaluating six Machine Learning Algorithms based on water flow data from 4,028 tubular wells (Groundwater Information System - SIAGAS). The modeling was supported by environmental covariates connected with water dynamics (climate, geology, relief, soil, and vegetation). The covariate selection technique (RFE- Recursive Feature Elimination) selected the most important ones. The Random Forest (RF) model was the most efficient in the prediction (R2 0.16 and an RMSE of 17.50 m3/h). The model captured the influence of critical environmental covariates. The central and western regions of the NMG exhibited the highest groundwater potential, with flow values from tubular wells in these areas 620% higher than the eastern regions. This disparity can be attributed to the significant presence of psamitic, and carbonate sedimentary rocks characterized by high porosity and fissures, extensive plateaus (recharge zones), and higher rainfall levels observed in the central and western regions. The mapping results can serve as a valuable tool for public management, especially to define areas suitable for groundwater use in the NMG. We encourage future studies for advances and improvements in groundwater modeling processes in the region.
Downloads
Métricas
Detalhes do artigo
Esta obra está licenciado com uma Licença Creative Commons Attribution 3.0 Unported License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Referências
ASHER, M. J.; CROKE, B. F. W.; JAKEMAN, A. J.; PEETERS, L. J. M. A review of surrogate models and their application to groundwater modeling. Water Resources Research, v. 51, n. 8, 5957-5973, 2015. DOI. 10.1002/2015WR016967
ATMAN, D.; VELÁSQUEZ, L. N. M.; FANTINEL, L. M. Controle estrutural na circulação e composição das águas no sistema aquífero cárstico-fissural do grupo bambuí, norte de minas gerais. Águas Subterrâneas, v. 25, n. 1, 2011. DOI. 10.14295/ras.v25i1.21023
BANKS, D.; ODLING, N. E.; SKARPHAGEN, H.; ROHR-TORP, E. Permeability and stress in crystalline rocks. Terra Nova, v. 8, n. 3, 223-235, 1996. DOI. 10.1111/j.1365-3121.1996.tb00751.x
BERGEN, K. J.; JOHNSON, P. A.; DE HOOP, M. V.; BEROZA, G. C. Machine learning for data-driven discovery in solid earth geoscience. Science, v. 363, n. 6433, eaau0323, 2019. DOI. 10.1126/science.aau0323
BOSQUILIA, R. W. D.; NEALE, C. M. U.; DUARTE, S. N.; LONGHI, S. J.; FERRAZ, S. F. D. B.; MULLER-KARGER, F. E. Evaluation of evapotranspiration variations according to soil type using multivariate statistical analysis. Geoderma, v. 355, 113906, 2019. DOI. 10.1016/j.geoderma.2019.113906
BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, 5-32, 2001. DOI. 10.1023/a:1010933404324
CÂNDIDO, M. O.; BEATO, D. A. C.; FIUME, B.; SCUDINO, P. C. B.; CARNEIRO, F. A.; NASCIMENTO, F. M. F.; COUTINHO, M. M.; ALMEIDA, C. S. C.; SOCORRO, A. S.; SANTANA, M. S. Projeto águas do norte de minas, panm: Estudo da disponibilidade hídrica subterrânea do norte de minas gerais: Relatório de integração. CPRM. 2019.
CERQUEIRA, T. C.; MENDONÇA, R. L.; GOMES, R. L.; DE JESUS, R. M.; DA SILVA, D. M. L. Effects of urbanization on water quality in a watershed in northeastern brazil. Environmental Monitoring and Assessment, v. 192, n. 1, 65, 2019. DOI. 10.1007/s10661-019-8020-0
COELHO, M. T. P.; DINIZ-FILHO, J. A.; RANGEL, T. F. A parsimonious view of the parsimony principle in ecology and evolution. v. 42, n. 5, 968-976, 2019. DOI. 10.1111/ecog.04228
CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, 273-297, 1995. DOI. 10.1007/BF00994018
COSTA, L. R. F. Considerações sobre as macrounidades geomorfológicas do estado de minas gerais–brasil. William Morris Davis–Revista de Geomorfologia, v. 2, n. 1, 11-18, 2021. DOI. 10.48025/ISSN2675-6900.v2n1.2021.109
CPRM. -serviço geológico do brasil- mapa de domínios/subdomínios hidrogeológicos do brasil. 2007. Available at: https://rigeo.cprm.gov.br/handle/doc/10323?mode=full. Acess date: 16/10/2023.
DAS, S.; GUPTA, A.; GHOSH, S. Exploring groundwater potential zones using mif technique in semi-arid region: A case study of hingoli district, maharashtra. Spatial Information Research, v. 25, n. 6, 749-756, 2017. DOI. 10.1007/s41324-017-0144-0
DURÃES, R. C. F.; GOMES, A. J. D. L.; GOMES, J. L. D. S. Lowering of the water table in the urban spaces of the city of montes claros-mg. Research, Society and Development, v. 11, n. 7, e20211730018, 2022. DOI. 10.33448/rsd-v11i7.30018
EMPINOTTI, V. L.; BUDDS, J.; AVERSA, M. Governance and water security: The role of the water institutional framework in the 2013–15 water crisis in são paulo, brazil. Geoforum, v. 98, 46-54, 2019. DOI. 10.1016/j.geoforum.2018.09.022
FICK, S. E.; HIJMANS, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37, n. 12, 4302-4315, 2017. DOI. 10.1002/joc.5086
GASPAR, M. T. P.; CAMPOS, J. E. G.; MORAES, R. Determinação das espessuras do sistema aquífero urucuia a partir de estudo geofísico. Revista Brasileira de Geociências, v. 42, n. Supl 1, 154-166, 2012. DOI. 10.5327/Z0375-75362012000500013
GHISI, E. Potential for potable water savings by using rainwater in the residential sector of brazil. Building and Environment, v. 41, n. 11, 1544-1550, 2006. DOI. 10.1016/j.buildenv.2005.03.018
GOMES, L. C.; FARIA, R. M.; SOUZA, E.; VELOSO, G. V.; SCHAEFER, C. E. G. R.; FERNANDES FILHO, E. I. Modelling and mapping soil organic carbon stocks in brazil. Geoderma, v. 340, 337-350, 2019. DOI. 10.1016/j.geoderma.2019.01.007
GONÇALVES, J. L. M.; ALVARES, C. A.; ROCHA, J. H. T.; BRANDANI, C. B.; HAKAMADA, R. Eucalypt plantation management in regions with water stress. Southern Forests: a Journal of Forest Science, v. 79, n. 3, 169-183, 2017. DOI. 10.2989/20702620.2016.1255415
GONÇALVES, R. D.; STOLLBERG, R.; WEISS, H.; CHANG, H. K. Using grace to quantify the depletion of terrestrial water storage in northeastern brazil: The urucuia aquifer system. Science of The Total Environment, v. 705, 135845, 2020. DOI. 10.1016/j.scitotenv.2019.135845
GUIMARÃES, D.; REIS, R.; LANDAU, E. Índices pluviométricos em minas gerais - boletim de pesquisa e desenvolvimento. Sete Lagoas: Embrapa, available at <https://www.infoteca.cnptia.embrapa.br/handle/doc/879085 > acess date: 16/10/2023 2010. 88 p.
HUSSEIN, E. A.; THRON, C.; GHAZIASGAR, M.; BAGULA, A.; VACCARI, M. Groundwater prediction using machine-learning tools. Algorithms, v. 13, n. 11, 300, 2020. DOI. 10.3390/a13110300
IBGE. Censo demográfico. Rio de Janeiro, 2010. Available at: https://censo2010.ibge.gov.br/. Acess date: 16/10/2023.
INMET. Instituto nacional de meteorologia - seca deixa 130 cidades em situação de emergência em minas gerais. 2023. Available at: https://www.defesacivil.mg.gov.br/index.php?option=com_content&view=article&id=14. Acess date: 21 de maio de 2023.
INOCÊNCIO, T. D. M.; RIBEIRO NETO, A.; OERTEL, M.; MEZA, F. J.; SCOTT, C. A. Linking drought propagation with episodes of climate-induced water insecurity in pernambuco state - northeast brazil. Journal of Arid Environments, v. 193, 104593, 2021. DOI. 10.1016/j.jaridenv.2021.104593
IPCC. Impacts of 1.5 c global warming on natural and human systems. v. 2022. https://helda.helsinki.fi/handle/10138/311749
KLINK, C. A.; MACHADO, R. B. Conservation of the brazilian cerrado. Conservation Biology, v. 19, n. 3, 707-713, 2005. DOI. 10.1111/j.1523-1739.2005.00702.x
KRUSKAL, W. H.; WALLIS, W. A. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, v. 47, n. 260, 583-621, 1952. DOI. 10.1080/01621459.1952.10483441
KUHN, M.; JOHNSON, K. Applied predictive modeling. 26 ed. New York: Springer, 2013. DOI. 10.1007/978-1-4614-6849-3.
KUHN, M.; WING, J.; WESTON, S.; WILLIAMS, A.; KEEFER, C.; ENGELHARDT, A.; COOPER, T.; MAYER, Z.; KENKEL, B.; TEAM, R. C.; BENESTY, M.; LESCARBEAU, R.; ZIEM, A.; SCRUCCA, L.; TANG, Y.; CANDAN, C.; HUNT, T. Package ‘caret’. The R Journal, v. 2020.
LIAW, A.; WIENER, M. J. R. N. Classification and regression by random forest. R news, v. 2, n. 3, 18-22, 2002.
LITTLE, C.; LARA, A.; MCPHEE, J.; URRUTIA, R. Revealing the impact of forest exotic plantations on water yield in large scale watersheds in south-central chile. Journal of Hydrology, v. 374, n. 1, 162-170, 2009. DOI. 10.1016/j.jhydrol.2009.06.011
LUCAS, M. C.; KUBLIK, N.; RODRIGUES, D. B. B.; MEIRA NETO, A. A.; ALMAGRO, A.; MELO, D. D. C. D.; ZIPPER, S. C.; OLIVEIRA, P. T. S. Significant baseflow reduction in the sao francisco river basin. Water, v. 13, n. 1, 2, 2021. DOI. 10.3390/w13010002
MACHADO, M. F.; SILVA, S. F. D. Geodiversidade do estado de minas gerais. 2010. ISSN 8574990914. Available at: https://rigeo.cprm.gov.br/handle/doc/14704. Acess date: 16/10/2023.
MAKONYO, M.; MSABI, M. M. Identification of groundwater potential recharge zones using gis-based multi-criteria decision analysis: A case study of semi-arid midlands manyara fractured aquifer, north-eastern tanzania. Remote Sensing Applications: Society and Environment, v. 23, 100544, 2021. DOI. 10.1016/j.rsase.2021.100544
MARANGON, B. B.; SILVA, T. A.; CALIJURI, M. L.; ALVES, S. D. C.; DOS SANTOS, V. J.; OLIVEIRA, A. P. D. S. Reuse of treated municipal wastewater in productive activities in brazil’s semi-arid regions. Journal of Water Process Engineering, v. 37, 101483, 2020. DOI. 10.1016/j.jwpe.2020.101483
MEDEIROS, F. J.; OLIVEIRA, C. P.; TORRES, R. R. Climatic aspects and vertical structure circulation associated with the severe drought in northeast brazil (2012–2016). Climate Dynamics, v. 55, n. 9, 2327-2341, 2020. DOI. 10.1007/s00382-020-05385-1
MELLO, C. R.; SÁ, M. A. C.; CURI, N.; MELLO, J. M.; VIOLA, M. R.; SILVA, A. M. Erosividade mensal e anual da chuva no estado de minas gerais. Pesquisa Agropecuária Brasileira, v. 42, n. 4, 537-545, 2007. DOI. 10.1590/S0100-204X2007000400012
MILBORROW, S.; HASTIE, T.; TIBSHIRANI, R. Earth: Multivariate adaptive regression spline models. R package version, v. 3, 2-7, 2014.
MOSAVI, A.; SAJEDI HOSSEINI, F.; CHOUBIN, B.; GOODARZI, M.; DINEVA, A. A.; RAFIEI SARDOOI, E. Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resources Management, v. 35, n. 1, 23-37, 2021. DOI. 10.1007/s11269-020-02704-3
NAGHIBI, S. A.; AHMADI, K.; DANESHI, A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, v. 31, n. 9, 2761-2775, 2017. DOI. 10.1007/s11269-017-1660-3
NANEKELY, M.; AL-FARAJ, F.; SCHOLZ, M. Analysis of a joint impact of climate change and anthropogenic interventions on groundwater depletion in arid and semi-arid areas. In: SHERIF, M.;SINGH, V. P., et al (Ed.). Water resources management and sustainability: Solutions for arid regions. Cham: Springer Nature Switzerland, 2023. p. 167-203. DOI. 110.1016/j.jhydrol.2015.1009.1074.
NISTOR, M. M.; RAHARDJO, H.; SATYANAGA, A.; HAO, K. Z.; XIAOSHENG, Q.; SHAM, A. W. L. Investigation of groundwater table distribution using borehole piezometer data interpolation: Case study of singapore. Engineering Geology, v. 271, 105590, 2020. DOI. 10.1016/j.enggeo.2020.105590
NOBRE, C. A.; MARENGO, J. A.; SELUCHI, M. E.; CUARTAS, L. A.; ALVES, L. M. Some characteristics and impacts of the drought and water crisis in southeastern brazil during 2014 and 2015. Journal of Water Resource Protection, v. 8, n. 2, 252-262, 2016. DOI. 10.4236/jwarp.2016.82022
OLAYA, V.; CONRAD, O. Chapter 12 geomorphometry in saga. In: HENGL, T. e REUTER, H. I. (Ed.). Developments in soil science: Elsevier, 2009. v. 33, p. 293-308.
OUYANG, L.; WU, J.; ZHAO, P.; LI, Y.; ZHU, L.; NI, G.; RAO, X. Consumption of precipitation by evapotranspiration indicates potential drought for broadleaved and coniferous plantations in hilly lands of south china. Agricultural Water Management, v. 252, 106927, 2021. DOI. 10.1016/j.agwat.2021.106927
PADARIAN, J.; MINASNY, B.; MCBRATNEY, A. B. Machine learning and soil sciences: A review aided by machine learning tools. SOIL, v. 6, n. 1, 35-52, 2020. DOI. 10.5194/soil-6-35-2020
PAIVA, A. C. D. E.; NASCIMENTO, N.; RODRIGUEZ, D. A.; TOMASELLA, J.; CARRIELLO, F.; REZENDE, F. S. Urban expansion and its impact on water security: The case of the paraíba do sul river basin, são paulo, brazil. Science of The Total Environment, v. 720, 137509, 2020. DOI. 10.1016/j.scitotenv.2020.137509
PESSOA, P.; ATMAN, D.; KIMURA, G. Environmental problems in the lagoa santa karst. In: S. AULER, A. e PESSOA, P. (Ed.). Lagoa santa karst: Brazil's iconic karst region. Cham: Springer International Publishing, 2020. p. 283-303. DOI. 210.1007/1978-1003-1030-35940-35949_35913.
PINTO, C.; SILVA, L.; LEITE, C. Mapa geológico do estado de minas gerais, 1: 1.000. 000. CPRM-CODEMIG, Belo Horizonte. Belo Horizonte: CODEMIG. 2003.
RAHMATI, O.; POURGHASEMI, H. R.; MELESSE, A. M. Application of gis-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at mehran region, iran. CATENA, v. 137, 360-372, 2016. DOI. 10.1016/j.catena.2015.10.010
RCORE, T. R: A language and environment for statistical computing. Vienna, Austria (2016), 2023. Available at: http://www.R-project.org/. Acess date: Access Date: 15 jan 2023.
RIBEIRO, J. F.; WALTER, B. M. T. Fitofisionomias do bioma cerrado. In: SANO, S. M. e ALMEIDA, S. P. (Ed.). Cerrado: Ambiente e flora. Planaltina: EMBRAPA-CPAC, 1998.
SAHOUR, H.; GHOLAMI, V.; VAZIFEDAN, M. A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. Journal of Hydrology, v. 591, 125321, 2020. DOI. 10.1016/j.jhydrol.2020.125321
SENA, N. C.; VELOSO, G. V.; FILHO, E. I. F.; FRANCELINO, M. R.; SCHAEFER, C. E. G. R. Analysis of terrain attributes in different spatial resolutions for digital soil mapping application in southeastern brazil. Geoderma Regional, v. e00268, 2020. DOI. 10.1016/j.geodrs.2020.e00268
SHIKLOMANOV, I. A. Appraisal and assessment of world water resources. Water International, v. 25, n. 1, 11-32, 2000. DOI. 10.1080/02508060008686794
SIAGAS. Sistema de informações de águas subterrâneas. Rio de Janeiro. Serviço Geológico do Brasil - CPRM. Available in <http://siagasweb.cprm.gov.br/layout/> Acess Date 25 July 2023. , 2023. Available at: http://siagasweb.cprm.gov.br/layout/. Acess date: 25/07/2023.
SILVA, J. L.; RIBEIRO, E. M.; LIMA, V. M. P.; HELLER, L. As secas no jequitinhonha: Demandas, técnicas e custos do abastecimento no semiárido de minas gerais. Revista Brasileira de Estudos Urbanos e Regionais, v. 22, 2020. DOI. 10.22296/2317-1529.rbeur.202013
SILVA, L. A.; SOUZA, C. M. P.; LEITE, M. E.; FILGUEIRAS, R. Estimating water loss in an environmental protection area -minas gerais, southeast brazil. Caderno de Geografia, v. 30, n. 62, 768-768, 2020. DOI. 10.5752/P.2318-2962.2020v30n62p768
SINGHA, S.; PASUPULETI, S.; SINGHA, S. S.; SINGH, R.; KUMAR, S. Prediction of groundwater quality using efficient machine learning technique. Chemosphere, v. 276, 130265, 2021. DOI. 10.1016/j.chemosphere.2021.130265
SOPHOCLEOUS, M. Interactions between groundwater and surface water: The state of the science. Hydrogeology Journal, v. 10, n. 1, 52-67, 2002. DOI. 10.1007/s10040-001-0170-8
SOUZA, C. M. P.; FIGUEIREDO, N. A.; COSTA, L. M.; VELOSO, G. V.; ALMEIDA, M. I. S.; FERREIRA, E. J. Machine learning algorithm in the prediction of geomorphic indices for appraisal the influence of landscape structure on fluvial systems, southeastern - brazil. Revista Brasileira de Geomorfologia, v. 21, n. 2, 363-378, 2020. DOI. 10.20502/rbg.v21i2.1671
SOUZA, C. M. P.; VELOSO, G. V.; MELLO, C. R.; RIBEIRO, R. P.; SILVA, L. A. P.; LEITE, M. E.; FERNANDES FILHO, E. I. Spatiotemporal prediction of rainfall erosivity by machine learning, minas gerais state, brazil. Geocarto International, v. 37, n. 2, 1-19, 2022. DOI. 10.1080/10106049.2022.2060318
STEIN, M. L. Interpolation of spatial data: Some theory for kriging. New York, NY: Springer, 1999// 2012. DOI. 10.1007/978-1-4612-1494-6_1.
TAYLOR, R. G.; SCANLON, B.; DÖLL, P.; RODELL, M.; VAN BEEK, R.; WADA, Y.; LONGUEVERGNE, L.; LEBLANC, M.; FAMIGLIETTI, J. S.; EDMUNDS, M.; KONIKOW, L.; GREEN, T. R.; CHEN, J.; TANIGUCHI, M.; BIERKENS, M. F. P.; MACDONALD, A.; FAN, Y.; MAXWELL, R. M.; YECHIELI, Y.; GURDAK, J. J.; ALLEN, D. M.; SHAMSUDDUHA, M.; HISCOCK, K.; YEH, P. J. F.; HOLMAN, I.; TREIDEL, H. Ground water and climate change. Nature Climate Change, v. 3, n. 4, 322-329, 2013. DOI. 10.1038/nclimate1744
TENENWURCEL, M. A.; MOURA, M. S.; COSTA, A. M.; MOTA, P. K.; VIANA, J. H. M.; FERNANDES, L. F. S.; PACHECO, F. A. L. An improved model for the evaluation of groundwater recharge based on the concept of conservative use potential: A study in the river pandeiros watershed, minas gerais, brazil. Water, v. 12, n. 4, 1001, 2020. DOI. 10.3390/w12041001
UFV; CETEC; UFLA; FEAM. Mapa de solos do estado de minas gerais - escala 1: 500.000. v. 49, 2010.
UNEPE. Global environment outlook 3: Past, present and future perspectives. Environmental Management and Health, v. 13, n. 5, 560-561, 2002. DOI. 10.1108/emh.2002.13.5.560.1
USGS. Earthexplorer Disponível em:< http://earthexplorer.usgs.gov>, 2023. Available at: Disponível em:< http://earthexplorer.usgs.gov>. Acess date: Access Date: 27 jan 2023.