Assessment of Water Spectral Indices Using a Landsat-9 scene: a Case Study in a Semi-arid Region
Conteúdo do artigo principal
Resumo
Spectral indices for detecting surface water bodies play a crucial role in environmental studies, on the other hand, these indices behave differently depending on the study site or the bands used. Therefore, this study proposed an evaluation of the performance of spectral indices in detecting surface water, using a scene from the Landsat-9 satellite and implementing a new index called NIR-Green Water Index (NGWI). After a visual inspection, positive performance was found in all indices in the detection of surface water, especially those formulated using the green band, such as the Normalized Difference Water Index (NDWI), (NGWI) and Water Ratio Index (WRI). During the Pearson correlation and Separability Index analysis between the "Water" and "Non-water" classes, the Automated Water Extraction Index (AWEI) demonstrated the highest average separability, reaching 1.24, and the lowest correlation, with 0.15, which places it as the index with the best detection estimates. The NGWI stood out especially when compared to other indices, showing a moderate behavior with an average separability of 1.15, surpassing the WRI (1.12) and the MNDWI (1.13), in addition to an average Pearson correlation of 0.17, just behind AWEI (0.16) and WRI (0.15). Although all the indices mentioned have demonstrated usefulness in water detection, it was observed that more complex indices, with a more elaborate formulation and less sensitivity to shadows, such as AWEI, produced results comparable to simpler indices, such as NDWI and MNDWI.
Downloads
Métricas
Detalhes do artigo
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Referências
ALBERTINI, C.; IACOBELLIS, V.; MANFREDA, S. Detection of Surface Water and Floods with Multispectral Satellites. Remote Sensing, [S.L.], v. 14, n. 23, p. 6005, 27 nov. 2022. MDPI AG. http://dx.doi.org/10.3390/rs14236005.
ALI, M. I.; DIRAWAN, G. D.; HASIM, A. H.; ABIDIN, M. R. Detection of Changes in Surface Water Bodies Urban Area with NDWI and MNDWI Methods. International Journal On Advanced Science, Engineering And Information Technology, [S.L.], v. 9, n. 3, p. 946, 30 jun. 2019. Insight Society. http://dx.doi.org/10.18517/ijaseit.9.3.8692.
ARST, K. I︠. Optical properties and remote sensing of multicomponental water bodies. Springer Science & Business Media, 2003.
BARBOSA, C. C. F; NOVO, M. E. M. L.; MARTINS, V. S. (Ed.). Introdução ao sensoriamento remoto de sistemas aquáticos: princípios e aplicações. Instituto Nacional de Pesquisas Espaciais, 2019.
BHAGA, T. D.; DUBE, T.; SHEKEDE, M. D.; SHOKO, C. Impacts of Climate Variability and Drought on Surface Water Resources in Sub-Saharan Africa Using Remote Sensing: a review. Remote Sensing, [S.L.], v. 12, n. 24, p. 4184, 21 dez. 2020. MDPI AG. http://dx.doi.org/10.3390/rs12244184.
BIJEESH, T. V.; NARASIMHAMURTHY, K. N. Surface water detection and delineation using remote sensing images: a review of methods and algorithms. Sustainable Water Resources Management, [S.L.], v. 6, n. 4, p. 100-120, 9 jul. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s40899-020-00425-4.
BLACKMORE, D. S. "Use of Water Indices Derived from Landsat OLI Imagery and GIS to Estimate the Hydrologic Connectivity of Wetlands in the Tualatin River National Wildlife Refuge." Thesis, Portland State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10191067.
BROWN, C. F.; BRUMBY, S. P.; GUZDER-WILLIAMS, B.; BIRCH, T.; HYDE, S. B.; MAZZARIELLO, J.; CZERWINSKI, W.; PASQUARELLA, V. J.; HAERTEL, R.; ILYUSHCHENKO, S.. Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, [S.L.], v. 9, n. 1, p. 251, 9 jun. 2022. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41597-022-01307-4.
CHEN, F.; CHEN, X.; VOORDE, T. V.; ROBERTS, D.; JIANG, H.; XU, W. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, [S.L.], v. 242, p. 111706, jun. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2020.111706
CHOUDHARY, S. S.; GHOSH, S. K. Surface Water Area Extraction by Using Water Indices and DFPS Method Applied to Satellites Data. Sensing and Imaging, [S.L.], v. 23, n. 1, p. 100-120, 26 out. 2022. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11220-022-00403-4
CHUVIECO, E.; MARTÍN, M. P.; PALACIOS, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, [S.L.], v. 23, n. 23, p. 5103-5110, jan. 2002. Informa UK Limited. http://dx.doi.org/10.1080/01431160210153129.
CORDEIRO, M. C. R.; MARTINEZ, J. M.; PEÑA-LUQUE, S. Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, [S.L.], v. 253, p. 112209, fev. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2020.112209.
DEOLI, V.; KUMAR, D.; KUMAR, M.; KURIQI, A.; ELBELTAGI, A. Water spread mapping of multiple lakes using remote sensing and satellite data. Arabian Journal of Geosciences, [S.L.], v. 14, n. 21, p. 100-120, 27 out. 2021. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s12517-021-08597-9
ELSAYED, S.; GAD, M.; FAROUK, M.; SALEH, A. H.; HUSSEIN, H.; ELMETWALLI, A. H.; ELSHERBINY, O.; MOGHANM, F. S.; MOUSTAPHA, M. E.; TAHER, M. A. Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability, [S.L.], v. 13, n. 18, p. 10408, 18 set. 2021. MDPI AG. http://dx.doi.org/10.3390/su131810408.
FEYISA, G. L.; MEILBY, H.; FENSHOLT, R.; PROUD, S. R. Automated Water Extraction Index: a new technique for surface water mapping using landsat imagery. Remote Sensing Of Environment, [S.L.], v. 140, p. 23-35, jan. 2014. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2013.08.029
HERNDON, K.; MUENCH, R.; CHERRINGTON, E.; GRIFFIN, R. An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel. Sensors, [S.L.], v. 20, n. 2, p. 431, 12 jan. 2020. MDPI AG. http://dx.doi.org/10.3390/s20020431.
KHAN, R. H. N. Study of Fluctuations in Surface Area of Lake Haramaya using NDWI and MNDWI Methods. Jgise: Journal of Geospatial Information Science and Engineering, [S.L.], v. 5, n. 1, p. 36, 30 jun. 2022. Universitas Gadjah Mada. http://dx.doi.org/10.22146/jgise.68630
KAUFMAN, Y.J.; REMER, L.A.. Detection of forests using mid-IR reflectance: an application for aerosol studies. Ieee Transactions On Geoscience And Remote Sensing, [S.L.], v. 32, n. 3, p. 672-683, maio 1994. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/36.297984
KUTSER, T.; HEDLEY, J.; GIARDINO, C.; ROELFSEMA, C.; BRANDO, V. E. Remote sensing of shallow waters – A 50 year retrospective and future directions. Remote Sensing of Environment, [S.L.], v. 240, p. 111619, abr. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2019.111619.
LAONAMSAI, J.; JULPHUNTHONG, P.; SAPRATHET, T.; KIMMANY, B.; GANCHANASURAGIT, T.; CHOMCHEAWCHAN, P.; TOMUN, N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology, [S.L.], v. 10, n. 3, p. 70, 19 mar. 2023. MDPI AG. http://dx.doi.org/10.3390/hydrology10030070
LEE, Z.; CARDER, K.; ARNONE, R.; HE, M.. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors, [S.L.], v. 7, n. 12, p. 3428-3441, 20 dez. 2007. MDPI AG. http://dx.doi.org/10.3390/s7123428.
LI, M.; WU, P.; WANG, B.; PARK, H.; HUI, Y.; YANLAN, W. A Deep Learning Method of Water Body Extraction From High Resolution Remote Sensing Images With Multisensors. Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, [S.L.], v. 14, p. 3120-3132, 2021. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/jstars.2021.3060769
MA, S.; ZHOU, Y.; GOWDA, P. H.; DONG, J.; ZHANG, G.; KAKANI, V. G.; WAGLE, P.; CHEN, L.; FLYNN, K. C.; JIANG, W. Application of the water-related spectral reflectance indices: a review. Ecological Indicators, [S.L.], v. 98, p. 68-79, mar. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.ecolind.2018.10.049.
MARTÍN, M. P.; GÓMEZ, I.; CHUVIECO, E. Burnt Area Index (BAIM) for burned area discrimination at regional scale using MODIS data. Forest Ecology and Management, [S.L.], v. 234, p. 221, nov. 2006. Elsevier BV. http://dx.doi.org/10.1016/j.foreco.2006.08.248.
MCFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, [S.L.], v. 17, n. 7, p. 1425-1432, maio 1996. Informa UK Limited. http://dx.doi.org/10.1080/01431169608948714.
MOSTAFA, Y. A Review on Various Shadow Detection and Compensation Techniques in Remote Sensing Images. Canadian Journal of Remote Sensing, [S.L.], v. 43, n. 6, p. 545-562, 18 out. 2017. Informa UK Limited. http://dx.doi.org/10.1080/07038992.2017.1384310.
MUSIE, W.; GONFA, G. Fresh water resource, scarcity, water salinity challenges and possible remedies: a review. Heliyon, [S.L.], v. 9, n. 8, p. 1-18, ago. 2023. Elsevier BV. http://dx.doi.org/10.1016/j.heliyon.2023.e18685
PURNAM, K. K.; PRASAD, A. D.; GANASALA, P. Water indices for surface water extraction using geospatial techniques: a brief review. Sustainable Water Resources Management, [S.L.], v. 10, n. 2, p. 100-120, 5 mar. 2024. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s40899-024-01035-0
OUMA, Y. O.; TATEISHI, R. A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, [S.L.], v. 27, n. 15, p. 3153-3181, 10 ago. 2006. Informa UK Limited. http://dx.doi.org/10.1080/01431160500309934.
OTSU, N. A Threshold Selection Method from Gray-Level Histograms. Ieee Transactions On Systems, Man, And Cybernetics, [S.L.], v. 9, n. 1, p. 62-66, jan. 1979. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/tsmc.1979.4310076
SABALE, R.; VENKATESH, B.; JOSE, Mathew. Sustainable water resource management through conjunctive use of groundwater and surface water: a review. Innovative Infrastructure Solutions, [S.L.], v. 8, n. 1, p. 42-72, 11 nov. 2022. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s41062-022-00992-9
TANG, W.; ZHAO, C.; LIN, J.; JIAO, C.; ZHENG, G.; ZHU, J.; PAN, X.; HAN, X. Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water, [S.L.], v. 14, n. 6, p. 855, 9 mar. 2022. MDPI AG. http://dx.doi.org/10.3390/w14060855
TENG, J.; XIA, S.; LIU, Y.; YU, X.; DUAN, H.; XIAO, H.; ZHAO, C. Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China. Ecological Indicators, [S.L.], v. 122, p. 107260, mar. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.ecolind.2020.107260
SAGAN, V.; PETERSON, K. T.; MAIMAITIJIANG, M.; SIDIKE, P.; SLOAN, J.; GREELING, B. A.; MAALOUF, S.; ADAMS, C. Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, [S.L.], v. 205, p. 103187, jun. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.earscirev.2020.103187.
SOLTANIAN, F. K.; ABBASI, M.; BAKHTYARI, H. R. R. Flood Monitoring Using NDWI And MNDWI Spectral Indices: a case study of aghqala flood-2019, golestan province, Iran. The International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences, [S.L.], v. -4/18, p. 605-607, 18 out. 2019. Copernicus GmbH. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w18-605-2019.
SHEN, L.; LI, C. Water body extraction from Landsat ETM+ imagery using adaboost algorithm. 2010 18Th International Conference On Geoinformatics, [S.L.], p. 100-120, jun. 2010. IEEE. http://dx.doi.org/10.1109/geoinformatics.2010.5567762.
RAD, A. M.; KREITLER, J.; SADEGH, M. Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling & Software, [S.L.], v. 140, p. 105030, jun. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.envsoft.2021.105030
RAWAT, K. S.; SAHU, S. R.; SINGH, S. K.; CHANDER, S.; GUJRATI, A. Water Quality Analysis Using Normalized Difference Chlorophyll Index (NDCI) and Normalized Difference Turbidity Index (NDTI), Using Google Earth Engine Platform. International Conference On Modeling, Simulation &Amp; Intelligent Computing (Mosicom), [S.L.], p. 42-72, 7 dez. 2023. IEEE. http://dx.doi.org/10.1109/mosicom59118.2023.10458842.
TEW, Y. L.; TAN, M. L.; SAMAT, N.; CHAN, N. W.; MAHAMUD, M. A.; SABJAN, M. A.; LEE, L. K.; SEE, K. F.; WEE, S. T. Comparison of Three Water Indices for Tropical Aquaculture Ponds Extraction using Google Earth Engine. Sains Malaysiana, [S.L.], v. 51, n. 2, p. 369-378, 28 fev. 2022. Penerbit Universiti Kebangsaan Malaysia (UKM Press). http://dx.doi.org/10.17576/jsm-2022-5102-04.
USGS, U. S. G. S. “Landsat 8-9 Collection 2 Level 2 Science Product Guide | U.S. Geological Survey.”. 2023, www.usgs.gov/media/files/landsat-8-9-collection-2-level-2-science-product-guide
VERMOTE, E.; JUSTICE, C.; CLAVERIE, M.; FRANCH, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, [S.L.], v. 185, p. 46-56, nov. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2016.04.008
ZHOU, Y; DONG, J.; XIAO, X.; XIAO, T.; YANG, Z.; ZHAO, G.; ZOU, Z.; QIN, Y. Open Surface Water Mapping Algorithms: a comparison of water-related spectral indices and sensors. Water, [S.L.], v. 9, n. 4, p. 256, 5 abr. 2017. MDPI AG. http://dx.doi.org/10.3390/w9040256
WALT, S. V. D.; SCHÖNBERGER, J. L.; NUNEZ-IGLESIAS, J.; BOULOGNE, F.; WARNER, J. D.; YAGER, N.; GOUILLART, E.; YU, T. Scikit-image: image processing in python. Peerj, [S.L.], v. 2, p. 453, 19 jun. 2014. PeerJ. http://dx.doi.org/10.7717/peerj.453.
WANG, Z.; LIU, J.; LI, J.; ZHANG, D. Multi-Spectral Water Index (MuWI): a native 10-m multi-spectral water index for accurate water mapping on sentinel-2. Remote Sensing, [S.L.], v. 10, n. 10, p. 1643, 16 out. 2018. MDPI AG. http://dx.doi.org/10.3390/rs10101643
WEN, Zhaofei; ZHANG, Ce; SHAO, Guofan; WU, Shengjun; ATKINSON, Peter M.. Ensembles of multiple spectral water indices for improving surface water classification. International Journal Of Applied Earth Observation And Geoinformation, [S.L.], v. 96, p. 102278, abr. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.jag.2020.102278
WICAKSONO, A.; WICAKSONO, P. Geometric Accuracy Assessment for Shoreline Derived from NDWI, MNDWI, and AWEI Transformation on Various Coastal Physical Typology in Jepara Regency using Landsat 8 OLI Imagery in 2018. Geoplanning: Journal of Geomatics and Planning, [S.L.], v. 6, n. 1, p. 55, 30 ago. 2019. Institute of Research and Community Services Diponegoro University (LPPM UNDIP). http://dx.doi.org/10.14710/geoplanning.6.1.55-72
XIE, H.; LUO, X.; XU, X.; PAN, H.; TONG, X. Evaluation of Landsat 8 OLI imagery for unsupervised inland water extraction. International Journal of Remote Sensing, [S.L.], v. 37, n. 8, p. 1826-1844, 11 abr. 2016. Informa UK Limited. http://dx.doi.org/10.1080/01431161.2016.1168948.
XU, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, [S.L.], v. 27, n. 14, p. 3025-3033, 20 jul. 2006. Informa UK Limited. http://dx.doi.org/10.1080/01431160600589179.
YUE, H.; LI, Y.; QIAN, J.; LIU, Y. A new accuracy evaluation method for water body extraction. International Journal of Remote Sensing, [S.L.], v. 41, n. 19, p. 7311-7342, 7 jul. 2020. Informa UK Limited. http://dx.doi.org/10.1080/01431161.2020.1755740
YANG, J.; DU, X. An enhanced water index in extracting water bodies from Landsat TM imagery. Annals Of Gis, [S.L.], v. 23, n. 3, p. 141-148, 16 jun. 2017. Informa UK Limited. http://dx.doi.org/10.1080/19475683.2017.1340339.