Evaluation of Spectral Indices for Mapping Burned Areas using Unsupervised Classification in Different Ecosystems using Spectral Indices from Sentinel-2 images

Conteúdo do artigo principal

Juarez Antonio da Silva Júnior
Admilson da Penha Pacheco


Fire is one of the natural agents that has the greatest impact on the terrestrial ecosystem and plays an important ecological function in a huge portion of the Earth's surface. Remote sensing is an important source for mapping and monitoring forests as well as environmental damage to the landscape caused by fire.To estimate the severity of the fire, the temporal distinction between the spectral indices  before and after the fire is critical. This study examines the performance of spectral indices derived from Sentinel-2 Multi Spectral Instrument (MSI) bands for the detection of fire-affected areas in forest fires in regions with different ecosystems located in Brazil, the United States, and Portugal. Separability Index (M) and the Reed-Xiaoli Detection (RXD) Anomaly automatic classifier allowed us to assess the spectral separability and the thematic accuracy of the burned area for the different spectral indices. The analysis parameters were based on spatial dispersion with validation data, Commission Errors (CE), Omission Errors (OE), and Sorensen–Dice Coefficient (DC). The results indicated that the indices based exclusively on the longer shortwave infrared (SWIR1), shorter SWIR (SWIR2), and red-edge bands showed a high degree of separability and were more suitable for detecting the burned areas, although it was observed that the diversity of land use affects the performance of the indices. The evaluation of the performance of the spectral indices based on Sentinel-2 data was important in the analyzes of potentialities and limitations in the detection of burned areas in the face of the different global biomes.


Não há dados estatísticos.


Carregando Métricas ...

Detalhes do artigo

Como Citar
SILVA JÚNIOR, J. A. da; PACHECO, A. da P. Evaluation of Spectral Indices for Mapping Burned Areas using Unsupervised Classification in Different Ecosystems using Spectral Indices from Sentinel-2 images. Revista Brasileira de Cartografia, [S. l.], v. 75, 2023. DOI: 10.14393/rbcv75n0a-68307. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/68307. Acesso em: 17 jul. 2024.
Sensoriamento Remoto


AL-DABBAGH, Ali Mahdi; ILYAS, Muhammad. Uni-temporal Sentinel-2 imagery for wildfire detection using deep learning semantic segmentation models. Geomatics, Natural Hazards And Risk, [S.L.], v. 14, n. 1, p. 200-225, 5 abr. 2023. Informa UK Limited. http://dx.doi.org/10.1080/19475705.2023.2196370.

ALENCAR, Ane A. C.; ARRUDA, Vera L. S.; SILVA, Wallace Vieira da; CONCIANI, Dhemerson E.; COSTA, Diego Pereira; CRUSCO, Natalia; DUVERGER, Soltan Galano; FERREIRA, Nilson Clementino; FRANCA-ROCHA, Washington; HASENACK, Heinrich. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sensing, [S.L.], v. 14, n. 11, p. 2510, 24 maio 2022. MDPI AG. http://dx.doi.org/10.3390/rs14112510.

ARRUDA, Vera L.s.; PIONTEKOWSKI, Valderli J.; ALENCAR, Ane; PEREIRA, Reginaldo S.; MATRICARDI, Eraldo A.T.. An alternative approach for mapping burn scars using Landsat imagery, Google Earth Engine, and Deep Learning in the Brazilian Savanna. Remote Sensing Applications: Society and Environment, [S.L.], v. 22, p. 100472, abr. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.rsase.2021.100472.

BA, Rui; SONG, Weiguo; LI, Xiaolian; XIE, Zixi; LO, Siuming. Integration of Multiple Spectral Indices and a Neural Network for Burned Area Mapping Based on MODIS Data. Remote Sensing, [S.L.], v. 11, n. 3, p. 326, 6 fev. 2019. MDPI AG. http://dx.doi.org/10.3390/rs11030326.

BASTARRIKA, Aitor; CHUVIECO, Emilio; MARTÍN, M. Pilar. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: balancing omission and commission errors. Remote Sensing of Environment, [S.L.], v. 115, n. 4, p. 1003-1012, 15 abr. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2010.12.005

BELENGUER-PLOMER, Miguel A.; TANASE, Mihai A.; FERNANDEZ-CARRILLO, Angel; CHUVIECO, Emilio. Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal anomalies. Remote Sensing of Environment, [S.L.], v. 233, p. 111345, nov. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2019.111345.

BROVKINA, Olga; STOJANOVIć, Marko; MILANOVIć, Slobodan; LATYPOV, Iscander; MARKOVIć, Nenad; CIENCIALA, Emil. Monitoring of post-fire forest scars in Serbia based on satellite Sentinel-2 data. Geomatics, Natural Hazards And Risk, [S.L.], v. 11, n. 1, p. 2315-2339, January 1. 2020. Informa UK Limited. http://dx.doi.org/10.1080/19475705.2020.1836037.

BOSCHETTI, Mirco; STROPPIANA, Daniela; BRIVIO, Pietro Alessandro. Mapping Burned Areas in a Mediterranean Environment Using Soft Integration of Spectral Indices from High-Resolution Satellite Images. Earth Interactions, [S.L.], v. 14, n. 17, p. 1-20, 1 nov. 2010. American Meteorological Society. http://dx.doi.org/10.1175/2010ei349.1.

CAMPAGNOLO, M.L.; LIBONATI, R.; RODRIGUES, J.A.; PEREIRA, J.M.C.. A comprehensive characterization of MODIS daily burned area mapping accuracy across fire sizes in tropical savannas. Remote Sensing of Environment, [S.L.], v. 252, p. 112115, jan. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2020.112115.

CAIN, James W.; JOHNSON, Heather E.; KRAUSMAN, Paul R.. WILDFIRE AND DESERT BIGHORN SHEEP HABITAT, SANTA CATALINA MOUNTAINS, ARIZONA. The Southwestern Naturalist, [S.L.], v. 50, n. 4, p. 506-513, dez. 2005. Southwestern Association of Naturalists. http://dx.doi.org/10.1894/0038-4909(2005)050[0506:wadbsh]2.0.co;2.

CHUVIECO, Emilio; MOUILLOT, Florent; WERF, Guido R. van Der; MIGUEL, Jesús San; TANASE, Mihai; KOUTSIAS, Nikos; GARCÍA, Mariano; YEBRA, Marta; PADILLA, Marc; GITAS, Ioannis. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sensing of Environment, [S.L.], v. 225, p. 45-64, maio 2019. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2019.02.013.

CHUVIECO, E.; MARTÍN, M. P.; PALACIOS, A.. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, [S.L.], v. 23, n. 23, p. 5103-5110, jan. 2002. Informa UK Limited. http://dx.doi.org/10.1080/01431160210153129

DESHPANDE, Monish Vijay; PILLAI, Dhanyalekshmi; JAIN, Meha. Agricultural burned area detection using an integrated approach utilizing multi spectral instrument based fire and vegetation indices from Sentinel-2 satellite. Methodsx, [S.L.], v. 9, p. 101741, 2022. Elsevier BV. http://dx.doi.org/10.1016/j.mex.2022.101741.

DICE, Lee R.. Measures of the Amount of Ecologic Association Between Species. Ecology, [S.L.], v. 26, n. 3, p. 297-302, jul. 1945. Wiley. http://dx.doi.org/10.2307/1932409.

ESA, S.-2. M. G. Sentinel-2 - Missions - Sentinel Online - Sentinel Online.(2023). Available in: <https://sentinel.esa.int/web/sentinel/missions/sentinel-2/>

ESQUE, Todd C.; WEBB, Robert H.; WALLACE, Cynthia S. A.; VAN RIPER, Charles; MCCREEDY, Chris; SMYTHE, Lindsay. Desert Fires Fueled by Native Annual Forbs: effects of fire on communities of plants and birds in the lower sonoran desert of arizona. The Southwestern Naturalist, [S.L.], v. 58, n. 2, p. 223-233, jun. 2013. Southwestern Association of Naturalists. http://dx.doi.org/10.1894/0038-4909-58.2.223.

FARHADI, Hadi; MOKHTARZADE, Mehdi; EBADI, Hamid; BEIRAMI, Behnam Asghari. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: a case study over the andika and behbahan regions, iran. Environmental Monitoring And Assessment, [S.L.], v. 194, n. 5, p. 100-115, 16 abr. 2022. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10661-022-10045-4.

FILIPPONI, Federico. Exploitation of Sentinel-2 Time Series to Map Burned Areas at the National Level: a case study on the 2017 italy wildfires. Remote Sensing, [S.L.], v. 11, n. 6, p. 622, March 14. 2019. MDPI AG. http://dx.doi.org/10.3390/rs11060622.

FILIPPONI, Federico. BAIS2: burned area index for sentinel-2. The 2Nd International Electronic Conference On Remote Sensing, [S.L.], v. 5, n. 1, p. 27-37, March 22. 2018. MDPI. http://dx.doi.org/10.3390/ecrs-2-05177.

FOOD AND AGRICULTURE ORGANIZATION (FAO). Global Forest Resources Assessment 2010 — Main Report; FAO Forestry Paper 163; FAO: Rome, Italy, 2010. Available online: http://www.fao.org/3/i1757e/i1757e.pdf (accessed on January 24 2021).

FORKEL, Matthias; ANDELA, Niels; HARRISON, Sandy P.; LASSLOP, Gitta; VAN MARLE, Margreet; CHUVIECO, Emilio; DORIGO, Wouter; FORREST, Matthew; HANTSON, Stijn; HEIL, Angelika. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, [S.L.], v. 16, n. 1, p. 57-76, January 11. 2019. Copernicus GmbH. http://dx.doi.org/10.5194/bg-16-57-2019.

GARCIA, Mariano; CHUVIECO, Emilio. Assessment of the potential of SAC-C/MMRS imagery for mapping burned areas in Spain. Remote Sensing of Environment, [S.L.], v. 92, n. 3, p. 414-423, ago. 2004. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2004.04.011.

GIGLIO, Louis; SCHROEDER, Wilfrid; JUSTICE, Christopher O.. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, [S.L.], v. 178, p. 31-41, jun. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2016.02.054.

HUANG, Haiyan; ROY, David; BOSCHETTI, Luigi; ZHANG, Hankui; YAN, Lin; KUMAR, Sanath; GOMEZ-DANS, Jose; LI, Jian. Separability Analysis of Sentinel-2A Multi-Spectral Instrument (MSI) Data for Burned Area Discrimination. Remote Sensing, [S.L.], v. 8, n. 10, p. 873, 22 out. 2016. MDPI AG. http://dx.doi.org/10.3390/rs8100873.

INPE. INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS. Disponível em: https://queimadas.dgi.inpe.br/queimadas/aq30m/

ICNF. Defesa da Floresta Contra Incêndios. Instituto da Conservação da Natureza e das Florestas, Lisboa, 2023.

KAUFMAN, Y.J.; REMER, L. Remote sensing of vegetation in the mid-IR: The 3.75 μm channels. IEEE Geoscience and Remote Sensing Letters. v 32, p. 672-683, 1994.

KEY, C. H., & BENSON, N. C. The Normalized Burn Ratio (NBR): A Landsat TM radiometric measure of burn severity. U.S. Department of the Interior, Northern Rocky Mountain Science Centre. 1999.

LIBONATI, Renata; DACAMARA, Carlos; SETZER, Alberto; MORELLI, Fabiano; MELCHIORI, Arturo. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery. Remote Sensing, [S.L.], v. 7, n. 11, p. 15782-15803, 24 nov. 2015. MDPI AG. http://dx.doi.org/10.3390/rs71115782.

LIBONATI, Renata; DACAMARA, Carlos C.; PEREIRA, José Miguel C.; PERES, Leonardo F.. On a new coordinate system for improved discrimination of vegetation and burned areas using MIR/NIR information. Remote Sensing of Environment, [S.L.], v. 115, n. 6, p. 1464-1477, jun. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2011.02.006.

LIU, Sicong; ZHENG, Yongjie; DALPONTE, Michele; TONG, Xiaohua. A novel fire index-based burned area change detection approach using Landsat-8 OLI data. European Journal of Remote Sensing, [S.L.], v. 53, n. 1, p. 104-112, January 1. 2020. Informa UK Limited. http://dx.doi.org/10.1080/22797254.2020.1738900.

MALAMBO, Lonesome; HEATWOLE, Conrad D.. Automated training sample definition for seasonal burned area mapping. Isprs Journal of Photogrammetry And Remote Sensing, [S.L.], v. 160, p. 107-123, fev. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.isprsjprs.2019.11.026.

MINISTÉRIO DO MEIO AMBIENTE (MMA). Relatório Parametrizado – Unidade de Conservação Refúgio de Vida Silvestre Veredas do Oeste Baiano. 2007. Disponível em: <http://sistemas.mma.gov.br/cnuc/index.php?ido=relatorioparametrizado.exibeRelatorio&relatorioPadrao=true&idUc=219>.

MELCHIORRE, Andrea; BOSCHETTI, Luigi. Global Analysis of Burned Area Persistence Time with MODIS Data. Remote Sensing, [S.L.], v. 10, n. 5, p. 750, 14 maio 2018. MDPI AG. http://dx.doi.org/10.3390/rs10050750.

MPAKAIRI, Kudzai Shaun; NDAIMANI, Henry; KAVHU, Blessing. Exploring the utility of Sentinel-2 MSI derived spectral indices in mapping burned areas in different land-cover types. Scientific African, [S.L.], v. 10, p. 100-112, nov. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.sciaf.2020.e00565.

PACHECO, Admilson da Penha; SILVA JUNIOR, Juarez Antonio da; RUIZ-ARMENTEROS, Antonio Miguel; HENRIQUES, Renato Filipe Faria. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sensing, [S.L.], v. 13, n. 7, p. 1345, 1 abr. 2021. MDPI AG. http://dx.doi.org/10.3390/rs13071345

PÉREZ-LUQUE, Antonio J.; RAMOS-FONT, María Eugenia; BARBIERI, Mauro J. Tognetti; PÉREZ, Carlos Tarragona; RENTA, Guillermo Calvo; CRUZ, Ana Belén Robles. Vegetation Cover Estimation in Semi-Arid Shrublands after Prescribed Burning: field-ground and drone image comparison. Drones, [S.L.], v. 6, n. 11, p. 370, 21 nov. 2022. MDPI AG. http://dx.doi.org/10.3390/drones6110370

PEREIRA, Allan; PEREIRA, José; LIBONATI, Renata; OOM, Duarte; SETZER, Alberto; MORELLI, Fabiano; MACHADO-SILVA, Fausto; CARVALHO, Luis de. Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sensing, [S.L.], v. 9, n. 11, p. 1161, 14 nov. 2017. MDPI AG. http://dx.doi.org/10.3390/rs9111161

PEREIRA, A. A.; TEIXEIRA, F. R.; LIBONATI, R.; MELCHIORI, E. A.; CARVALHO, L. M. T. Avaliação de índices espectrais para identificação de áreas queimadas no cerrado utilizando dados landsat tm. Revista Brasileira de Cartografia, v. 68, n. 8, 16 out. 2016.

PEREIRA, J.M.C.. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. Ieee Transactions On Geoscience And Remote Sensing, [S.L.], v. 37, n. 1, p. 217-226, 1999. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/36.739156.

PICOTTE, Joshua J.; BHATTARAI, Krishna; HOWARD, Danny; LECKER, Jennifer; EPTING, Justin; QUAYLE, Brad; BENSON, Nate; NELSON, Kurtis. Changes to the Monitoring Trends in Burn Severity program mapping production procedures and data products. Fire Ecology, [S.L.], v. 16, n. 1, p. 100-115, June 25. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1186/s42408-020-00076-y.

PLENIOU, Magdalini; KOUTSIAS, Nikos. Sensitivity of spectral reflectance values to different burn and vegetation ratios: a multi-scale approach applied in a fire affected area. Isprs Journal of Photogrammetry And Remote Sensing, [S.L.], v. 79, p. 199-210, maio 2013. Elsevier BV. http://dx.doi.org/10.1016/j.isprsjprs.2013.02.016.

REED, I.s.; YU, X.. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. Ieee Transactions On Acoustics, Speech, And Signal Processing, [S.L.], v. 38, n. 10, p. 1760-1770, 1990. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/29.60107.

RAO, Weiqiang; QU, Ying; GAO, Lianru; SUN, Xu; WU, Yuanfeng; ZHANG, Bing. Transferable network with Siamese architecture for anomaly detection in hyperspectral images. International Journal Of Applied Earth Observation And Geoinformation, [S.L.], v. 106, p. 102669, fev. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.jag.2021.102669.

RODRIGUES, J.A.; LIBONATI, R.; PERES, L.F.; SETZER, A.. Burned Area Mapping on Conservation Units of Mountains Region of Rio de Janeiro Using Landsat-8 Data During the 2014 Drought. Anuário do Instituto de Geociências - Ufrj, [S.L.], v. 41, n. 1, p. 318-327, 16 maio 2018. Instituto de Geociencias - UFRJ. http://dx.doi.org/10.11137/2018_1_318_327.

SACRAMENTO, Iorrana Figueiredo; MICHEL, Roberto Ferreira Machado; SIQUEIRA, Rafael Gomes. Análise bitemporal de áreas queimadas na Mata Atlântica. Sociedade & Natureza, [S.L.], v. 32, p. 565-577, 14 ago. 2020. EDUFU - Editora da Universidade Federal de Uberlandia. http://dx.doi.org/10.14393/sn-v32-2020-53339.

SANTANA, Níckolas; CARVALHO JÚNIOR, Osmar de; GOMES, Roberto; GUIMARÃES, Renato. Burned-Area Detection in Amazonian Environments Using Standardized Time Series Per Pixel in MODIS Data. Remote Sensing, [S.L.], v. 10, n. 12, p. 1904, 29 nov. 2018. MDPI AG. http://dx.doi.org/10.3390/rs10121904.

SILVA JUNIOR, Juarez Antonio; PACHECO, Admilson da Penha. Avaliação de incêndio em ambiente de Caatinga a partir de imagens Landsat-8, índice de vegetação realçado e análise por componentes principais. Ciência Florestal, [S.L.], v. 31, n. 1, p. 417-439, 15 mar. 2021. Universidad Federal de Santa Maria. http://dx.doi.org/10.5902/1980509843818.

SORENSEN, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species and Its Application to Analyses of the Vegetation on Danish Commons. Kongelige Danske Videnskabernes Selskab, 5, 1-34, 1948.

SMITH, Alistair M.s.; WOOSTER, Martin J.; DRAKE, Nick A.; DIPOTSO, Frederick M.; FALKOWSKI, Michael J.; HUDAK, Andrew T.. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African Savannahs. Remote Sensing of Environment, [S.L.], v. 97, n. 1, p. 92-115, jul. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2005.04.014.

STROPPIANA, D.; BOSCHETTI, M.; ZAFFARONI, P.; BRIVIO, P.A.. Analysis and Interpretation of Spectral Indices for Soft Multicriteria Burned-Area Mapping in Mediterranean Regions. Ieee Geoscience And Remote Sensing Letters, [S.L.], v. 6, n. 3, p. 499-503, jul. 2009. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/lgrs.2009.2020067.

STROPPIANA, D.; BORDOGNA, G.; CARRARA, P.; BOSCHETTI, M.; BOSCHETTI, L.; BRIVIO, P.A.. A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. Isprs Journal Of Photogrammetry And Remote Sensing, [S.L.], v. 69, p. 88-102, abr. 2012. Elsevier BV. http://dx.doi.org/10.1016/j.isprsjprs.2012.03.001.

SOUZA, Cláudia de. Nos interstícios da soja: resistências, evoluções e adaptações dos sistemas agrícolas localizados na região do Refúgio de Vida Silvestre das Veredas do Oeste Baiano. 2017. 311 f., il. Tese (Doutorado em Desenvolvimento Sustentável)—Universidade de Brasília, Brasília, 2017.

SMIRAGLIA, Daniela; FILIPPONI, Federico; MANDRONE, Stefania; TORNATO, Antonella; TARAMELLI, Andrea. Agreement Index for Burned Area Mapping: integration of multiple spectral indices using sentinel-2 satellite images. Remote Sensing, [S.L.], v. 12, n. 11, p. 1862, 8 jun. 2020. MDPI AG. http://dx.doi.org/10.3390/rs12111862

STROPPIANA, Daniela; BORDOGNA, G.; BOSCHETTI, M.; CARRARA, P.; BOSCHETTI, L.; BRIVIO, P. A.. Positive and Negative Information for Assessing and Revising Scores of Burn Evidence. IEEE Geoscience And Remote Sensing Letters, [S.L.], v. 9, n. 3, p. 363-367, maio 2012. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/lgrs.2011.2167953.

TRIGG, S.; FLASSE, S.. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. International Journal of Remote Sensing, [S.L.], v. 22, n. 13, p. 2641-2647, jan. 2001. Informa UK Limited. http://dx.doi.org/10.1080/01431160110053185.

USGS, Landsat 8 Data Users Handbook. 2019 Department of the Interior U.S. Geological Survey.https://landsat.usgs.gov/sites/default/files/documents/Landsat8DataUsersHandbook.pdf

VAN DIJK, Daan; SHOAIE, Sorosh; VAN LEEUWEN, Thijs; VERAVERBEKE, Sander. Spectral signature analysis of false positive burned area detection from agricultural harvests using Sentinel-2 data. International Journal Of Applied Earth Observation And Geoinformation, [S.L.], v. 97, p. 102296, maio 2021. Elsevier BV. http://dx.doi.org/10.1016/j.jag.2021.102296.

VAN ECK, Christel M.; NUNES, Joao P.; VIEIRA, Diana C. S.; KEESSTRA, Saskia; KEIZER, Jan Jacob. Physically‐Based Modelling of the Post‐Fire Runoff Response of a Forest Catchment in Central Portugal: using field versus remote sensing based estimates of vegetation recovery. Land Degradation & Development, [S.L.], v. 27, n. 5, p. 1535-1544, 22 abr. 2016. Wiley. http://dx.doi.org/10.1002/ldr.2507.

VERAVERBEKE, S.; HARRIS, S.; HOOK, S.. Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data. Remote Sensing Of Environment, [S.L.], v. 115, n. 10, p. 2702-2709, out. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2011.06.010.