Modal laws in many-valued systems
DOI:
https://doi.org/10.14393/BEJOM-v5-2024-70314Keywords:
Modal laws, Four valued logics, Modal logics, Paraconsistent logicsAbstract
Since Dugundji, it has been known that there is no finite matrix semantics for modal logics between S1 and S5. However, it remains interesting to know what can be valid among the modal laws relative to many-valued matrices. The logic PM4N was introduced by Jean-Yves Beziau as a modal and 4-valued system, planned to accept several modal laws. From that matrix semantics, the paper shows some valid results. In this paper, we compare the system PM4N with two well-known logics: the usual modal system S5 and the paraconsistent logic J3. We show that the set of S5 theorems is properly included in the set of PM4N theorems; and every theorem of PM4N is a theorem of J3.
Downloads
References
AVRON, A. Natural 3-valued logics - Characterization and proof theory. The Journal of Symbolic Logic, v. 56, n. 1, p. 276-294, 1991.
BATENS, D. Paraconsistent extensional propositional logics. Logique et Analyse, v. 90-91, p. 195-234, 1980.
BEZIAU, J. Y. A new four-valued approach to modal logic. Logique et Analyse, v.54, n. 213, p. 109-121, 2011.
CARNIELLI, W. A.; CONIGLIO, M. E; MARCOS, J. Logics of formal inconsistency. In GABBAY, D.; GUENTHNER, F. (Eds.) Handbook of Philosophical Logic, 2nd. ed., v. 14, p. 1-93, 2007.
CARNIELLI, W. A.; MARCOS, J. A taxonomy of C-systems. Paraconsistency: the logical way to the inconsistent. Proc. of the II World Congress on Paraconsistency (WCP’2000), p. 1-94, Marcel Dekker, 2001.
CARNIELLI,W. A.; MARCOS, J.; AMO, S. Formal inconsistency and evolutionary databases. Logic and Logical Philosophy, v. 8, p. 115-152, 2000.
CHELLAS, B. Modal Logic: an introduction. Cambridge: Cambridge University Press, 1980.
CONIGLIO, M. E.; PERON, N. M. Dugundji’s Theorem Revisited. Logica Universalis, v. 8, p. 407-422, 2014.
D’OTTAVIANO, I. M. L.; da COSTA, N. C. A. Sur un problème de Jáskowski. Comptes Rendus de l’Académie de Sciences de Paris (A-B), v. 270, p. 1349-1353, 1970.
D’OTTAVIANO, I. M. L.; EPSTEIN, R. L. A many-valued paraconsistent logic. Reports on Mathematical Logic, Wydawnictwo U Jagiell., Krakow, v. 22, p. 89-103, 1988.
DUGUNDJI, J. Note on a property of matrices for Lewis and Langford’s calculi of propositions. The Journal of Symbolic Logic, v. 5, n. 4, p. 150-151, 1940.
FEITOSA, H. A. Traduções conservativas (Conservative translations). PhD Thesis. Campinas: Institute of Philosophy and Human Sciences, University of Campinas, 1997.
FEITOSA, H. A.; CRUZ, G. A.; GOLZIO, A. C. J. Um novo sistema de axiomas para a lógica paraconsistente J3. C.Q.D.- Revista Eletrônica Paulista de Matemática, v. 4, p. 16-29, 2015.
FEITOSA, H. A.; D’OTTAVIANO, I. M. L. Conservative translations. Annals of Pure and Applied Logic, v. 108, n. 1-3, p. 205-227, 2001.
FEITOSA, H. A.; FREITAS, R. A.; SOARES, M. R. Two deductions systems for the logic PM4N. INTERMATHS, v. 3, n. 2, p. 38-55, 2022.
MENDELSON, E. Introduction to mathematical logic. Princeton: D. Van Nostrand, 1964.
SILVA, J. J.; D’OTTAVIANO, I. M. L.; SETTE, A. M. Translations between logics. In: Caicedo, X., Montenegro, C. H. (Eds.). Models, Algebras and Proofs, v. 203. New York: Marcel Dekker, p. 435-448, 1999. (Lectures Notes in Pure and Applied Mathematics).
SOBOCIN´ SKI, B. Modal system S4.4. Notre Dame Journal of Formal Logic, v. 5, n. 4, p. 305-312, 1964.
SILVA, H. G.; FEITOSA, H. A.; CRUZ, G. A. Um sistema de tableaux para a lógica paraconsistente J3 . Kínesis, v. 9, n. 20, p. 126-150, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Hércules de Araujo Feitosa, Romulo Albano de Freitas, Marcelo Reicher Soares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The published articles are licensed under the CreativeCommons CCBY-NC/4.0 version. By submitting the material for publication, the authors automatically waive their copyright, agree to the editorial guidelines of the journal, and assume that the text has been properly reviewed. Simultaneous submission of articles to other journals is prohibited, as is the translation of articles published in the journal into another language without proper authorization.