Fantastic and associative filters in pseudo quasi-ordered residuated systems

Autores

DOI:

https://doi.org/10.14393/BEJOM-v4-2023-67770

Palavras-chave:

Quasi-ordered residuated system (QRS), Pseudo-QRS, Filters in pseudo-QRS, Fantastic filter in pseudo QRS, Associative filter in pseudo QRS

Resumo

An interesting generalization of hoop-algebras and commutative residuated lattices is the concept of quasi-ordered residuated systems (shortly QRS) introduced in 2018 by Bonzio and Chajda. Quasi-ordered residuated system is an integral commutative monoid with two internal binary operations interconnected by a residuation connection. This specificity is the reason for the complexity of this algebraic structure and the existence of a significant number of substructures in it, such as various types of filters. The notion of pseudo quasi-ordered residuated systems was introduced and developed in 2022 by this author, omitting the commutativity requirement in QRSs, discussing, additionally, filters in it. Concept of pseudo QRSs is a generalization of the notion of QRSs. In this report, as a continuation of previous research, in addition to the introduction of concepts of fantastic and associative filters in a pseudo quasi-ordered residuated system, their mutual connection between them is discussed, and some examples are presented.

Downloads

Não há dados estatísticos.

Biografia do Autor

Daniel A. Romano, IMVI Banja Luka, Bosnia and Herzegovina

Daniel A. Romano nasceu em Visegrad, Bósnia e Herzegovina, onde concluiu o ensino fundamental (elementar e médio) e o ensino médio. Na Faculdade de Matemática da Faculdade de Ciências da Universidade de Sarajevo, ele concluiu seus estudos de graduação em matemática e física (1969 - 1973) e seus estudos de pós-graduação em matemática (1976-1978). Ele defendeu seu doutorado em matemática na Faculdade de Matemática da Universidade de Belgrado em 1986.

No período de 1978 a 2017, ele avançou em sua carreira acadêmica, começando como assistente sênior em ensino e pesquisa (1978) e alcançando a posição de professor titular (1997). Ele foi um dos fundadores da Sociedade Matemática da República da Srpska em 1994 e atualmente é membro e presidente da Sociedade Científica de Matemáticos de Banja Luka, bem como o gerente geral do Instituto Matemático Virtual Internacional. Além disso, ele é membro da Sociedade Matemática Europeia e da União Matemática Internacional. Romano também desempenhou o papel de orientador em várias teses de doutorado em matemática e em um grande número de trabalhos de mestrado na área de pesquisa em educação matemática.

Referências

ALAVI, S. Z., BORZOOEI, R. A. and KOLOGANI, M. A. Filter theory of pseudo hoop-algebras, Italian Journal of Pure and Applied Mathematics, v. 37, p. 619–632, 2017.

BONZIO, S. and CHAJDA, I. Residuated relational systems, Asian-European Journal of Mathematics, v. 11, n. 2, ID: 1850024, 2018. doi.org/10.1142/S1793557118500249

BORZOOEI, R. A. and KOLOGANI, M. A. Results on hoops, Journal of Algebraic Hyperstructures and Logical Algebras, v. 1, n. 1, p. 61–77, 2020. DOI:10.29252/hatef.jahla.1.1.5

BOSNACH, B. Komplementäre halbgruppen. Axiomatik und arithmetik, Fundamenta Mathematicae, v. 64, p. 257–287, 1969.

BOSNACH, B. Komplementäre halbgruppen. Kongruenzen und Quotienten, Fundamenta Mathematicae, v. 69, p. 1–14, 1970.

DI NOLA, A., GEORGESCU, G. and IORGULESCU, A. Pseudo-BL algebras: Part I, Multiple-Valued Logic, v. 8, n. 5-6, p. 673–714, 2002.

GEORGESCU, G. and IORGULESCU, A. Pseudo-MV algebras, Multiple-Valued Logic, v. 6, n. 1-2, p. 95–135, 2001.

GEORGESCU, G., LEU ̧STEAN, L. and PREOTEASA. Pseudo-hoops, Journal of Multiple-Valued Logic and Soft Computing, v. 11, n. 1-2, p. 153–184, 2005.

HART, J. B., RAFTER, L. and TSINAKIS, C. The structure of commutative residuated lattices, International Journal of Algebra and Computation, v. 12, n. 04, p. 509–524, 2002.

JUPSEN, P. and TSINAKIS, C. A survey of residuated lattices. In: NARTINEZ, J. (Ed.). Ordered algebraic structures, Kluwe Acad. Publ., Dordrecht 2002. p.19–56.

KOWALSKI, T. and ONO, H. Residuated Lattices: An Algebraic Glimpse atLogic without Contraction, Japan Advanced Institute of Science and Technology: Ishikawa, Japan, 2001.

ONO, H. Substructural logics and residuated lattices - an introduction. 50 Years of Studia Logica, Trednds in Logic, Kluwer Academic Publischer, v. 21, p. 193–228, 2003.

ROMANO, D. A. Pseudo-UP algebras. An introduction, Bulletin of International Mathematical Virtual Institute, v. 10, n. 2, p. 349–355, 2020. DOI:10.7251/BIMVI2002349R.

ROMANO, D. A. On a generalization of KU-algerbas: Pseudo-KU algebras. Open Journal of Mathematical Sciences, v. 4, p. 200–210, 2020. DOI:10.30538/oms2020.0111

ROMANO, D. A. Filters in residuated relational system ordered under quasi-order, Bulletin of International Mathematical Virtual Institute, v. 10, n. 3, p. 529–534, 2020. DOI: 10.7251/ BIMVI2003529R.

ROMANO, D. A. Associated filters in quasi-ordered residuated systems, Contributions to Mathematics, v. 1 p. 22–26, 2020. DOI: 10.47443/cm.2020.0010.

ROMANO, D. A. Implicative filters in quasi-ordered residuated system, Proyecciones Journal of Mathematics, v. 40, n. 2, p. 417–424, 2021. http://dx.doi.org/10.22199/issn.0717-6279-2021-02-0025

Romano, D. A. Comparative filters in quasi-ordered residuated system, Bulletin of the International Mathematical Virtual Institute, v. 11, n. 1, p. 177–184, 2021.DOI: 10.7251/ BIMVI2101177R

ROMANO, D. A. Normal filter in quasi-ordered residuated systems, Quasigroups and Related Systems, v. 30, n. 2, p. 317–327, 2022.

ROMANO, D. A. Pseudo quasi-ordered residuated systems, Pan-American Journal of Mathematics, v. 1, ID: 1-12, pp 1–10, 2022. https://doi.org/10.28919/cpr-pajm/1-12

WARD, M. and DILWORTH, R. P. Residuated lattices, Transactions of the American Mathematical Society, v. 45, p. 335–354, 1939.

Downloads

Publicado

2023-09-13

Como Citar

ROMANO, D. A. Fantastic and associative filters in pseudo quasi-ordered residuated systems. BRAZILIAN ELECTRONIC JOURNAL OF MATHEMATICS, Uberlândia, v. 4, p. 1–17, 2023. DOI: 10.14393/BEJOM-v4-2023-67770. Disponível em: https://seer.ufu.br/index.php/BEJOM/article/view/67770. Acesso em: 24 dez. 2024.

Edição

Seção

Artigos - Matemática Pura