Red Tide Detection and Chlorophyll-a Concentration Retrieval in Southeast Coast of Brazil
Conteúdo do artigo principal
Resumo
We evaluated reflectance spectra and spectral features of a red tide event associated with high abundances of Mesodinium rubrum. The bloom was observed on the northern coast of the State of São Paulo between 12 and 25 January 2025, with hyperspectral ocean color satellite images. The diagnostic features of phytoplankton algae were observed near 610 nm and 705 nm, with a peak at 665 nm before decreasing. The Normalized Difference Red Tide (NDRT) was developed to map red tide occurrences. For the Bloom class, NDRT values are approximately 0.90, whereas for the No Bloom class, they range from 0.25 to 0.55. We also estimated chl-a concentration using different models: Normalized Difference Chlorophyll Index (NDCI) (0 – 60 mg/m3), a method based on Two Bands Algorithm (2BDA) (0 – 275 mg/m3), Algae Bloom Monitoring Application (AlgaeMAp) (0 - 1600 mg/m3) and Ocean Color 4 (OC4) (0.35 – 0.65 mg/m3).
Downloads
Detalhes do artigo
Seção

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Como Citar
Referências
ASI, Agenzia Spaziale Italiana. (2023). PRISMA User Manual. https://prisma.asi.it/missionselect/docs/PRISMA%20User%20Manual_Is1_3.pdf. Access: 10/03/2025
Beck, R., Zhan, S., Liu, H., Tong, S., Yang, B., Xu, M., Ye, Z., Huang, Y., Shu, S., Wu, Q., Wang, S., Berling, K., Murray, A., Emery, E., Reif, M., Harwood, J., Young, J., Nietch, C., Macke, D., … Su, H. (2016). Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing of Environment, 178, 15–30. https://doi.org/10.1016/j.rse.2016.03.002
Braga, F., Fabbretto, A., Vanhellemont, Q., Bresciani, M., Giardino, C., Scarpa, G. M., Manfè, G., Concha, J. A., & Brando, V. E. (2022). Assessment of PRISMA water reflectance using autonomous hyperspectral radiometry. ISPRS Journal of Photogrammetry and Remote Sensing, 192, 99–114. https://doi.org/10.1016/j.isprsjprs.2022.08.009
Bresciani, M., Giardino, C., Fabbretto, A., Pellegrino, A., Mangano, S., Free, G., & Pinardi, M. (2022). Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes. Resources, 11(2), 8. https://doi.org/10.3390/resources11020008
Burkholder, J. M., Shumway, S. E., & Glibert, P. M. (2018). Food Web and Ecosystem Impacts of Harmful Algae. Em S. E. Shumway, J. M. Burkholder, & S. L. Morton (Org.), Harmful Algal Blooms (1o ed., p. 243–336). Wiley. https://doi.org/10.1002/9781118994672.ch7
CETESB. (2021). PLANO DE CONTINGÊNCIA PARA GESTÃO INTEGRADA DE RISCOS ASSOCIADOS A FLORAÇÕES DE MICROALGAS TÓXICAS EM ÁGUAS DO LITORAL PAULISTA. https://cetesb.sp.gov.br/wp-content/uploads/sites/24/2023/08/Plano-Contigencia-para-Gestao-Integrada-de-Riscos-Associados-a-Floracoes-de-Microalgas-Toxicas-em-Aguas-do-Litoral-Paulista.pdf
Cetinić, I., Rousseaux, C. S., Carroll, I. T., Chase, A. P., Kramer, S. J., Werdell, P. J., Siegel, D. A., Dierssen, H. M., Catlett, D., Neeley, A., Soto Ramos, I. M., Wolny, J. L., Sadoff, N., Urquhart, E., Westberry, T. K., Stramski, D., Pahlevan, N., Seegers, B. N., Sirk, E., … Sayers, M. (2024). Phytoplankton composition from sPACE: Requirements, opportunities, and challenges. Remote Sensing of Environment, 302, 113964. https://doi.org/10.1016/j.rse.2023.113964
Dall’Olmo, G., & Gitelson, A. A. (2005). Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Applied Optics, 44(3), 412. https://doi.org/10.1364/AO.44.000412
Díaz, P. A., Baldrich, Á. M., Rodríguez, F., Díaz, M., Álvarez, G., Pérez-Santos, I., Schwerter, C., Rodríguez-Villegas, C., Carbonell, P., Cantarero, B., López, L., & Reguera, B. (2025). Mesodinium–Dinophysis encounters: Temporal and spatial constraints on Dinophysis blooms. Journal of Plankton Research, 47(2), fbae068. https://doi.org/10.1093/plankt/fbae068
Dierssen, H., McManus, G. B., Chlus, A., Qiu, D., Gao, B.-C., & Lin, S. (2015). Space station image captures a red tide ciliate bloom at high spectral and spatial resolution. Proceedings of the National Academy of Sciences, 112(48), 14783–14787. https://doi.org/10.1073/pnas.1512538112
Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environmental Monitoring and Assessment, 129(1–3), 295–308. https://doi.org/10.1007/s10661-006-9362-y
Gernez, P., Zoffoli, M. L., Lacour, T., Fariñas, T. H., Navarro, G., Caballero, I., & Harmel, T. (2023). The many shades of red tides: Sentinel-2 optical types of highly-concentrated harmful algal blooms. Remote Sensing of Environment, 287, 113486. https://doi.org/10.1016/j.rse.2023.113486
Gruber, T., & Willberg, M. (2019). Signal and error assessment of GOCE-based high resolution gravity field models. Journal of Geodetic Science, 9(1), 71–86. https://doi.org/10.1515/jogs-2019-0008
Guzmán, L., Varela, R., Muller-Karger, F., & Lorenzoni, L. (2016). Bio-optical characteristics of a red tide induced by Mesodinium rubrum in the Cariaco Basin, Venezuela. Journal of Marine Systems, 160, 17–25. https://doi.org/10.1016/j.jmarsys.2016.03.015
Hansen, P. J., Nielsen, L. T., Johnson, M., Berge, T., & Flynn, K. J. (2013). Acquired phototrophy in Mesodinium and Dinophysis – A review of cellular organization, prey selectivity, nutrient uptake and bioenergetics. Harmful Algae, 28, 126–139. https://doi.org/10.1016/j.hal.2013.06.004
Hestir, E. L., Brando, V. E., Bresciani, M., Giardino, C., Matta, E., Villa, P., & Dekker, A. G. (2015). Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 167, 181–195. https://doi.org/10.1016/j.rse.2015.05.023
Kyewalyanga, M., Sathyendranath, S., & Platt, T. (2002). Effect of Mesodinium rubrum (= Myrionecta rubra) on the action and absorption spectra of phytoplankton in a coastal marine inlet. Journal of Plankton Research, 24(7), 687–702. https://doi.org/10.1093/plankt/24.7.687
Lobo, F. D. L., Nagel, G. W., Maciel, D. A., Carvalho, L. A. S. D., Martins, V. S., Barbosa, C. C. F., & Novo, E. M. L. D. M. (2021). AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America. Remote Sensing, 13(15), 2874. https://doi.org/10.3390/rs13152874
Maciel, D. A., Rech, B., Santos, J. C. P., Paulino, R., Martins, V. S., Novo, E., Ciotti, Á., & Barbosa, C. (2025). NOTA TÉCNICA CONJUNTA LabISA/INPE, CEBIMAR/USP E GCER/MISSISSIPPI STATE UNIVERSITY - “MARÉ VERMELHA” NAS PRAIAS DE SÃO SEBASTIÃO E ILHABELA EM JANEIRO DE 2025. https://www.gov.br/inpe/pt-br/assuntos/ultimas-noticias/copy_of_NotatcnicaLabISA.pdf
Mafra, L. L., Nolli, P. K. W., Mota, L. E., Domit, C., Soeth, M., Luz, L. F. G., Sobrinho, B. F., Leal, J. G., & Di Domenico, M. (2019). Multi-species okadaic acid contamination and human poisoning during a massive bloom of Dinophysis acuminata complex in southern Brazil. Harmful Algae, 89, 101662. https://doi.org/10.1016/j.hal.2019.101662
Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394–406. https://doi.org/10.1016/j.rse.2011.10.016
Ogashawara, I., Kiel, C., Jechow, A., Kohnert, K., Ruhtz, T., Grossart, H.-P., Hölker, F., Nejstgaard, J. C., Berger, S. A., & Wollrab, S. (2021). The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sensing, 13(8), 1542. https://doi.org/10.3390/rs13081542
O’Reilly, J. E., & Werdell, P. J. (2019). Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sensing of Environment, 229, 32–47. https://doi.org/10.1016/j.rse.2019.04.021
Taylor, F. J. R., Blackbourn, D. J., & Blackbourn, J. (1971). The Red-Water Ciliate Mesodinium rubrum and its “Incomplete Symbionts”: A Review Including New Ultrastructural Observations. Journal of the Fisheries Research Board of Canada, 28(3), 391–407. https://doi.org/10.1139/f71-052