Red Tide Detection and Chlorophyll-a Concentration Retrieval in Southeast Coast of Brazil

Main Article Content

Júlio César Pimenta dos Santos
https://orcid.org/0000-0001-9194-6077
Bruno Rech
https://orcid.org/0000-0003-2787-2450
Daniel Andrade Maciel
https://orcid.org/0000-0003-4543-5908
Cláudio Clemente Faria Barbosa
https://orcid.org/0000-0002-3221-9774
Áurea Maria Ciotti
https://orcid.org/0000-0001-7163-8819
Vitor Souza Martins
https://orcid.org/0000-0003-3802-0368
Rejane de Souza Paulino
https://orcid.org/0000-0002-7295-8942
Evlyn Márcia Leão de Moraes Novo
https://orcid.org/0000-0002-1223-9276

Abstract

We evaluated reflectance spectra and spectral features of a red tide event associated with high abundances of Mesodinium rubrum. The bloom was observed on the northern coast of the State of São Paulo between 12 and 25 January 2025, with hyperspectral ocean color satellite images. The diagnostic features of phytoplankton algae were observed near 610 nm and 705 nm, with a peak at 665 nm before decreasing. The Normalized Difference Red Tide (NDRT) was developed to map red tide occurrences. For the Bloom class, NDRT values are approximately 0.90, whereas for the No Bloom class, they range from 0.25 to 0.55. We also estimated chl-a concentration using different models: Normalized Difference Chlorophyll Index (NDCI) (0 – 60 mg/m3), a method based on Two Bands Algorithm (2BDA) (0 – 275 mg/m3), Algae Bloom Monitoring Application (AlgaeMAp) (0 - 1600 mg/m3) and Ocean Color 4 (OC4) (0.35 – 0.65 mg/m3). 

Downloads

Download data is not yet available.

Article Details

Section

Special Section "Brazilian Symposium on GeoInformatics"

How to Cite

SANTOS, Júlio César Pimenta dos; RECH, Bruno; MACIEL, Daniel Andrade; BARBOSA, Cláudio Clemente Faria; CIOTTI, Áurea Maria; MARTINS, Vitor Souza; PAULINO, Rejane de Souza; NOVO, Evlyn Márcia Leão de Moraes. Red Tide Detection and Chlorophyll-a Concentration Retrieval in Southeast Coast of Brazil. Brazilian Journal of Cartography, [S. l.], v. 77, n. 0a, 2025. DOI: 10.14393/rbcv77n0a-79283. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/79283. Acesso em: 5 dec. 2025.

References

ASI, Agenzia Spaziale Italiana. (2023). PRISMA User Manual. https://prisma.asi.it/missionselect/docs/PRISMA%20User%20Manual_Is1_3.pdf. Access: 10/03/2025

Beck, R., Zhan, S., Liu, H., Tong, S., Yang, B., Xu, M., Ye, Z., Huang, Y., Shu, S., Wu, Q., Wang, S., Berling, K., Murray, A., Emery, E., Reif, M., Harwood, J., Young, J., Nietch, C., Macke, D., … Su, H. (2016). Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations. Remote Sensing of Environment, 178, 15–30. https://doi.org/10.1016/j.rse.2016.03.002

Braga, F., Fabbretto, A., Vanhellemont, Q., Bresciani, M., Giardino, C., Scarpa, G. M., Manfè, G., Concha, J. A., & Brando, V. E. (2022). Assessment of PRISMA water reflectance using autonomous hyperspectral radiometry. ISPRS Journal of Photogrammetry and Remote Sensing, 192, 99–114. https://doi.org/10.1016/j.isprsjprs.2022.08.009

Bresciani, M., Giardino, C., Fabbretto, A., Pellegrino, A., Mangano, S., Free, G., & Pinardi, M. (2022). Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes. Resources, 11(2), 8. https://doi.org/10.3390/resources11020008

Burkholder, J. M., Shumway, S. E., & Glibert, P. M. (2018). Food Web and Ecosystem Impacts of Harmful Algae. Em S. E. Shumway, J. M. Burkholder, & S. L. Morton (Org.), Harmful Algal Blooms (1o ed., p. 243–336). Wiley. https://doi.org/10.1002/9781118994672.ch7

CETESB. (2021). PLANO DE CONTINGÊNCIA PARA GESTÃO INTEGRADA DE RISCOS ASSOCIADOS A FLORAÇÕES DE MICROALGAS TÓXICAS EM ÁGUAS DO LITORAL PAULISTA. https://cetesb.sp.gov.br/wp-content/uploads/sites/24/2023/08/Plano-Contigencia-para-Gestao-Integrada-de-Riscos-Associados-a-Floracoes-de-Microalgas-Toxicas-em-Aguas-do-Litoral-Paulista.pdf

Cetinić, I., Rousseaux, C. S., Carroll, I. T., Chase, A. P., Kramer, S. J., Werdell, P. J., Siegel, D. A., Dierssen, H. M., Catlett, D., Neeley, A., Soto Ramos, I. M., Wolny, J. L., Sadoff, N., Urquhart, E., Westberry, T. K., Stramski, D., Pahlevan, N., Seegers, B. N., Sirk, E., … Sayers, M. (2024). Phytoplankton composition from sPACE: Requirements, opportunities, and challenges. Remote Sensing of Environment, 302, 113964. https://doi.org/10.1016/j.rse.2023.113964

Dall’Olmo, G., & Gitelson, A. A. (2005). Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Applied Optics, 44(3), 412. https://doi.org/10.1364/AO.44.000412

Díaz, P. A., Baldrich, Á. M., Rodríguez, F., Díaz, M., Álvarez, G., Pérez-Santos, I., Schwerter, C., Rodríguez-Villegas, C., Carbonell, P., Cantarero, B., López, L., & Reguera, B. (2025). Mesodinium–Dinophysis encounters: Temporal and spatial constraints on Dinophysis blooms. Journal of Plankton Research, 47(2), fbae068. https://doi.org/10.1093/plankt/fbae068

Dierssen, H., McManus, G. B., Chlus, A., Qiu, D., Gao, B.-C., & Lin, S. (2015). Space station image captures a red tide ciliate bloom at high spectral and spatial resolution. Proceedings of the National Academy of Sciences, 112(48), 14783–14787. https://doi.org/10.1073/pnas.1512538112

Duan, H., Zhang, Y., Zhang, B., Song, K., & Wang, Z. (2007). Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environmental Monitoring and Assessment, 129(1–3), 295–308. https://doi.org/10.1007/s10661-006-9362-y

Gernez, P., Zoffoli, M. L., Lacour, T., Fariñas, T. H., Navarro, G., Caballero, I., & Harmel, T. (2023). The many shades of red tides: Sentinel-2 optical types of highly-concentrated harmful algal blooms. Remote Sensing of Environment, 287, 113486. https://doi.org/10.1016/j.rse.2023.113486

Gruber, T., & Willberg, M. (2019). Signal and error assessment of GOCE-based high resolution gravity field models. Journal of Geodetic Science, 9(1), 71–86. https://doi.org/10.1515/jogs-2019-0008

Guzmán, L., Varela, R., Muller-Karger, F., & Lorenzoni, L. (2016). Bio-optical characteristics of a red tide induced by Mesodinium rubrum in the Cariaco Basin, Venezuela. Journal of Marine Systems, 160, 17–25. https://doi.org/10.1016/j.jmarsys.2016.03.015

Hansen, P. J., Nielsen, L. T., Johnson, M., Berge, T., & Flynn, K. J. (2013). Acquired phototrophy in Mesodinium and Dinophysis – A review of cellular organization, prey selectivity, nutrient uptake and bioenergetics. Harmful Algae, 28, 126–139. https://doi.org/10.1016/j.hal.2013.06.004

Hestir, E. L., Brando, V. E., Bresciani, M., Giardino, C., Matta, E., Villa, P., & Dekker, A. G. (2015). Measuring freshwater aquatic ecosystems: The need for a hyperspectral global mapping satellite mission. Remote Sensing of Environment, 167, 181–195. https://doi.org/10.1016/j.rse.2015.05.023

Kyewalyanga, M., Sathyendranath, S., & Platt, T. (2002). Effect of Mesodinium rubrum (= Myrionecta rubra) on the action and absorption spectra of phytoplankton in a coastal marine inlet. Journal of Plankton Research, 24(7), 687–702. https://doi.org/10.1093/plankt/24.7.687

Lobo, F. D. L., Nagel, G. W., Maciel, D. A., Carvalho, L. A. S. D., Martins, V. S., Barbosa, C. C. F., & Novo, E. M. L. D. M. (2021). AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America. Remote Sensing, 13(15), 2874. https://doi.org/10.3390/rs13152874

Maciel, D. A., Rech, B., Santos, J. C. P., Paulino, R., Martins, V. S., Novo, E., Ciotti, Á., & Barbosa, C. (2025). NOTA TÉCNICA CONJUNTA LabISA/INPE, CEBIMAR/USP E GCER/MISSISSIPPI STATE UNIVERSITY - “MARÉ VERMELHA” NAS PRAIAS DE SÃO SEBASTIÃO E ILHABELA EM JANEIRO DE 2025. https://www.gov.br/inpe/pt-br/assuntos/ultimas-noticias/copy_of_NotatcnicaLabISA.pdf

Mafra, L. L., Nolli, P. K. W., Mota, L. E., Domit, C., Soeth, M., Luz, L. F. G., Sobrinho, B. F., Leal, J. G., & Di Domenico, M. (2019). Multi-species okadaic acid contamination and human poisoning during a massive bloom of Dinophysis acuminata complex in southern Brazil. Harmful Algae, 89, 101662. https://doi.org/10.1016/j.hal.2019.101662

Mishra, S., & Mishra, D. R. (2012). Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sensing of Environment, 117, 394–406. https://doi.org/10.1016/j.rse.2011.10.016

Ogashawara, I., Kiel, C., Jechow, A., Kohnert, K., Ruhtz, T., Grossart, H.-P., Hölker, F., Nejstgaard, J. C., Berger, S. A., & Wollrab, S. (2021). The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany. Remote Sensing, 13(8), 1542. https://doi.org/10.3390/rs13081542

O’Reilly, J. E., & Werdell, P. J. (2019). Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sensing of Environment, 229, 32–47. https://doi.org/10.1016/j.rse.2019.04.021

Taylor, F. J. R., Blackbourn, D. J., & Blackbourn, J. (1971). The Red-Water Ciliate Mesodinium rubrum and its “Incomplete Symbionts”: A Review Including New Ultrastructural Observations. Journal of the Fisheries Research Board of Canada, 28(3), 391–407. https://doi.org/10.1139/f71-052

Most read articles by the same author(s)