Study on Vertical Crustal Deformations in Ecuador Based on GPS Data and Surface Loading Models

Conteúdo do artigo principal

Christian Pilapanta
https://orcid.org/0000-0003-1155-7173
Claudia Krueger

Resumo

The largest mass redistribution on the solid Earth's surface occurs as part of the hydrological cycle. These processes load and deform the solid Earth and consequently, an elastic response of the crust is induced. The general approach to predict this response involves the convolution of Green's functions and mass distribution models. Nevertheless, these models together do not conserve their global mass and the estimation of a total response by combining individual phenomena is not self-consistent. To solve this, a passive ocean response commonly is included. In order to study this process and its effects in the positions of geodetic sites, we compare 47 GPS vertical time series belonging to the continuous monitoring GNSS network of Ecuador and their respective loading signals over the last 20 years (2000 – 2020). The results indicate a moderate correlation between all the GPS heights and their loading signals and a reduction in the weighted root mean square (WRMS) in 35 of the 47 stations after filtering the total response, its value being higher in those stations with heights less than 3000 meters.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
PILAPANTA, C.; KRUEGER, C. Study on Vertical Crustal Deformations in Ecuador Based on GPS Data and Surface Loading Models. Revista Brasileira de Cartografia, [S. l.], v. 75, 2023. DOI: 10.14393/rbcv75n0a-67887. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/67887. Acesso em: 22 jul. 2024.
Seção
Geodésia

Referências

ALTAMIMI, Z.; REBISCHUNG, P.; MÉTIVIER, L.; COLLILIEUX, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, v. 121, n. 8, p. 6109–6131, 2016. Retrieved from: <http://doi.wiley.com/10.1029/2001JB000561%5Cnhttp://en.scientificcommons.org/43156606%5Cnhttp://www.iers.org/TN36/%5Cnhttps://geo.tuwien.ac.at/fileadmin/editors/GM/GM91_krasna.pdf>. Accessed: 11 jan. 2023.

BERRISFORD, P.; DEE, D.; POLI, P.; BRUGGE, R.; FIELDING, K.; FUENTES, M.; ALLBERG, P.; KOBAYASHI, S.; UPPALA, S.; SIMMONS, A. The ERA-Interim archive. 2011.

BEVIS, M.; BROWN, A. Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, v. 88, n. 3, p. 283–311, 2014.

BLEWITT, G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. Journal of Geophysical Research: Solid Earth, v. 108, n. B2, 2003.

BLEWITT, G.; CLARKE, P. Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. Journal of Geophysical Research: Solid Earth, v. 108, n. B6, 2003.

BLEWITT, G.; HAMMOND, W.; KREEMER, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, v. 99, 2018. Retrieved from: <https://eos.org/project-updates/harnessing-the-gps-data-explosion-for-interdisciplinary-science>. Accessed: 04 jan. 2023.

CLARKE, P. J. Effect of gravitational consistency and mass conservation on seasonal surface mass loading models. Geophysical Research Letters, v. 32, n. 8, p. L08306, 2005. Retrieved from: <http://doi.wiley.com/10.1029/2005GL022441>. Accessed: 03 jan. 2023.

DILL, R. Hydrological model LSDM for operational Earth rotation and gravity field variations. Scientific Technical Report, p. 35, 2008. Retrieved from: http://www.google.de/url?sa=t&rct=j&q=hydrological model lsdm for operational earth rotation and gravity field variations&source=web&cd=1&ved=0CEcQFjAA&url=https://e-docs.geo-leo.de/bitstream/handle/11858/00-1735-0000-0001-3286-C/0809.pdf?sequence=1&ei=Sb. Accessed: 04 jan. 2023.

DILL, R.; DOBSLAW, H. Numerical simulations of global-scale high-resolution hydrological crustal deformations. Journal of Geophysical Research: Solid Earth, v. 118, n. 9, p. 5008–5017, 2013.

DOBSLAW, H.; BERGMANN-WOLF, I.; DILL, R.; POROPAT, L.; THOMAS, M.; DAHLE, C.; ESSELBORN, S.; KÖNIG, R.; FLECHTNER, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophysical Journal International, v. 211, n. 1, p. 263–269, 2017.

DZIEWONSKI, A. M.; ANDERSON, D. L. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, v. 25, n. 4, p. 297–356, 1981.

FARRELL, W. E. Deformation of the Earth by surface loads. Reviews of Geophysics, v. 10, n. 3, p. 761, 1972. Retrieved from: <http://doi.wiley.com/10.1029/RG010i003p00761>. Accessed: 11 jan. 2023.

FARRELL, W. E.; CLARK, J. A. On Postglacial Sea Level. Geophysical Journal of the Royal Astronomical Society, v. 46, n. 3, p. 647–667, 1976.

FERREIRA, V.; NDEHEDEHE, C.; MONTECINO, H.; YONG, B.; YUAN, P.; ABDALLA, A.; MOHAMMED, A. Prospects for Imaging Terrestrial Water Storage in South America Using Daily GPS Observations. Remote Sensing, v. 11, n. 6, p. 679, 2019.

INTERNATIONAL GNSS SERVICE. 1st Data Reprocessing Campaign. Retrieved from: <http://acc.igs.org/reprocess.html>. Accessed: 21 apr. 2022.

INTERNATIONAL GNSS SERVICE. 2nd Data Reprocessing Campaign. Retrieved from: <http://acc.igs.org/reprocess2.html>. Accessed: 21 apr. 2022.

KALLBERG, P.; SIMMONS, A.; UPPALA, S.; FUENTES, M. The ERA-40 Archive. 2007.

KENNETT, B. L. N.; ENGDAHL, E. R.; BULAND, R. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, v. 122, n. 1, p. 108–124, 1995.

KUMMER, E. Eine neue Methode, die numerischen Summen langsam convergirender Reihen zu berechnen. Journal für die reine und angewandte Mathematik (Crelles Journal), v. 1837, n. 16, p. 206–214, 1837. Retrieved from: <https://www.degruyter.com/document/doi/10.1515/crll.1837.16.206/html>. Accessed: 13 oct. 2022.

LAMB, H. On Boussinesq’s Problem. Proceedings of the London Mathematical Society, v. s1-34, n. 1, p. 276–284, 1901. Retrieved from: http://doi.wiley.com/10.1112/plms/s1-34.1.276. Accessed: 13 oct. 2022.

LONGMAN, I. M. A Green’s function for determining the deformation of the Earth under surface mass loads: 1. Theory. Journal of Geophysical Research, v. 67, n. 2, p. 845–850, 1962. Retrieved from: <http://doi.wiley.com/10.1029/JZ067i002p00845>. Accessed: 12 oct. 2022.

LONGMAN, I. M. A Green’s function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical results. Journal of Geophysical Research, v. 68, n. 2, p. 485–496, 1963. Retrieved from: <http://doi.wiley.com/10.1029/JZ068i002p00485>. Accessed: 12 oct. 2022.

LOVE, A. E. H. The yielding of the earth to disturbing forces. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, v. 82, n. 551, p. 73–88, 1909. Retrieved from: <https://royalsocietypublishing.org/doi/10.1098/rspa.1909.0008>. Accessed: 12 oct. 2022.

LYARD, F.; LEFEVRE, F.; LETELLIER, T.; FRANCIS, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean Dynamics, v. 56, n. 5–6, p. 394–415, 2006.

MARTENS, H. R. Using Earth Deformation caused by Surface Mass Loading to Constrain the Elastic Structure of the Crust and Mantle, 2016. California Institute of Technology.

MARTENS, H. R.; RIVERA, L.; SIMONS, M. LoadDef: A Python-Based Toolkit to Model Elastic Deformation Caused by Surface Mass Loading on Spherically Symmetric Bodies. Earth and Space Science, v. 6, n. 2, p. 311–323, 2019.

MONTECINO, H. D.; DE FREITAS, S. R. C.; BÁEZ, J. C.; FERREIRA, V. G. Effects on Chilean Vertical Reference Frame due to the Maule Earthquake co-seismic and post-seismic effects. Journal of Geodynamics, v. 112, n. July, p. 22–30, 2017. Elsevier. Retrieved from: <https://doi.org/10.1016/j.jog.2017.07.006>. Accessed: 06 oct. 2022.

PETIT, G.; LUZUM, B. IERS Conventions (2010). Frankfurt am Main, 2010.

PILAPANTA, C.; KRUEGER, C. Dataset. Study of seasonal mass changes and vertical crustal deformations in continental Ecuador based on GPS data and surface loading models. Mendeley Data, 2022. Mendeley.

PLAG, H.; BLEWITT, G.; HERRING, T. Towards a Consistent Conventional Treatment of Surface-Load Induced Deformations. IERS Workshop on Conventions, 2007. Retrieved from: . Accessed: 04 oct. 2022.

PONTE, R. M.; RAY, R. D. Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophysical Research Letters, v. 29, n. 24, p. 6-1-6–4, 2002.

SÁNCHEZ, L.; DREWES, H. Crustal deformation and surface kinematics after the 2010 earthquakes in Latin America. Journal of Geodynamics, v. 102, p. 1–23, 2016. Elsevier Ltd. Retrieved from: <http://dx.doi.org/10.1016/j.jog.2016.06.005>. Accessed: 10 jan. 2023.

SHIDA, T. On the Body Tides of the Earth, A Proposal for the International Geodetic Association. Proceedings of the Tokyo Mathematico-Physical Society. 2nd Series, v. 6, n. 16, p. 242–258, 1912.

VAN DAM, T. M.; WAHR, J. Modeling environment loading effects: A review. Physics and Chemistry of the Earth, v. 23, n. 9–10, p. 1077–1087, 1998.

VAN DAM, T. Loading Response of the Earth: Theory and Examples. International Summer School on Space Geodesy and Earth System. Anais. 2012. Shanghi. Retrieved from: <http://center.shao.ac.cn/geodesy/school2012/SchoolLecture_Tonie VanTam.pdf>. Accessed: 19 may 2020.

VAN DAM, T. Surface Mass Loading of the Solid Earth: Theory and Examples. EGSIEM Autumn School for Satellite Gravimetry Applications. Anais. p.11–15, 2017. Potsdam. Retrieved from: <http://www.egsiem.eu/images/static/Autumn-School/Presentations/van_Dam.pdf>. Accessed: 19 may 2020.

WIJAYA, D. D.; BÖHM, J.; KARBON, M.; KRÀSNÀ, H.; SCHUH, H. Atmospheric pressure loading. Atmospheric effects in space geodesy. p.137–157, 2013. Springer.