Emprego da Técnica PSInSAR como Ferramenta Complementar em Análise de Subsidências. Caso de Estudo: Bairro Guabirotuba – Curitiba – PR

Conteúdo do artigo principal

Sérgio da Conceição Alves
https://orcid.org/0000-0003-0651-4742
Regiane Dalazoana
https://orcid.org/0000-0001-5468-0679
Cláudia Pereira Krueger
Laurent Polidori
https://orcid.org/0000-0001-6220-9561

Resumo

Para entender e monitorar adequadamente os riscos decorrentes de processos deformantes, como a subsidência, é fundamental identificá-los e avaliar sua magnitude adequadamente. O uso do GNSS é amplamente difundido para avaliar o panorama geral dessas instabilidades, seja por meio de posições absolutas ou medições contínuas dos pontos dentro das áreas afetadas. Por outro lado, a técnica interferométrica em uma abordagem multi-temporal (MT-InSAR), como a técnica PSInSAR, permite monitorar e detectar pequenas variações no terreno causadas por movimentos da superfície, como deslizamentos de terra ou subsidência. Nesse sentido, este manuscrito tem como objetivo complementar os resultados de uma análise de subsidência por meio de observações GPS realizadas em uma região do bairro Guabirotuba, em Curitiba (PR), utilizando o processamento interferométrico empregando a técnica PSInSAR com base em 77 imagens SAR do satélite Sentinel-1A, adquiridas na órbita descendente durante o período de 2016 a 2022. Os resultados revelaram que as estações da rede GPS implantada no Guabirotuba apresentaram uma velocidade extremamente lenta quando projetadas na direção da linha de visada (LoS) do satélite. A projeção na LoS dos deslocamentos relativos das coordenadas (north, east, up) e das velocidades apresentou comportamentos semelhantes e, em alguns pontos, divergentes quando comparados aos resultados obtidos com a técnica PSInSAR.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
ALVES, S. da C.; DALAZOANA, R.; KRUEGER , C. P.; POLIDORI, L. Emprego da Técnica PSInSAR como Ferramenta Complementar em Análise de Subsidências. Caso de Estudo: Bairro Guabirotuba – Curitiba – PR. Revista Brasileira de Cartografia, [S. l.], v. 75, 2023. DOI: 10.14393/rbcv75n0a-69226. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/69226. Acesso em: 16 set. 2024.
Seção
Geodésia
Biografia do Autor

Sérgio da Conceição Alves, Universidade Federal do Paraná

Técnico em Agropecuária pelo Centro Federal de Educação Tecnológica do Rio Pomba (MG), atualmente denominado de Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Formado em Engenharia de Agrimensura e Cartográfica pela Universidade Federal Rural do Rio de Janeiro (UFRRJ), mestre em Ciências Geodésicas no Programa de Pós-Graduação em Ciências Geodésicas na Universidade Federal do Paraná. Atualmente faço doutorado no mesmo programa o qual obtive meu título de mestre.

Referências

ABIDIN, H. Z.; DJAJA, R.; DARMAWAN, D.;HADI, S; AKBAR, A.;RAJIYOWIRYONO, H.; SUDIBYO, Y. ;MEILANO, I; KASUMA, M.A.; KAHAR, J.; SUBARYA, C.. Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards, v. 23, n. 2–3, p. 365–387, 2001.

ALATZA, S.; PAPOUTSIS, I.; PARADISSIS, D.; KONTOES, C.; PAPADOPOULOS, G. A. Multi-temporal inSAR analysis for monitoring ground deformation in Amorgos Island, Greece. Sensors (Switzerland), v. 20, n. 2, p. 1–15, 2020. DOI: 10.3390/s20020338.

ALVES, S. DA C.; KRUEGER, C. P.; DALAZOANA, R. Técnica PSInSAR na Avaliação de Deslocamentos: Análise Conceitual, Aplicações e Perspectivas. Revista Brasileira de Cartografia, v. 75, n. 1986, p. 1–24, 2023. DOI: 10.14393/rbcv75n0a-66102.

AMAGUA, C. G. P.; EURIQUES, J. F.; ALVES, S. DA C.; KRUEGER, C. P. Analysis of local surface displacement using repeated GPS measurements: a case study of the Guabirotuba area, Curitiba, Brazil. Boletim de Ciencias Geodesicas, v. 28, n. 1, p. 0–3, 2022. DOI: 10.1590/s1982-21702022000100005.

ANDREAS, H.; ZAINAL ABIDIN, H.; GUMILAR, I.; SIDIQ, T.; SARSIT, D. On the acceleration of land subsidence rate in Semarang City as detected from GPS surveys. E3S Web of Conferences, v. 94, 2019. DOI: 10.1051/e3sconf/20199404002.

ARIKAN, M.; HOOPER, A.; HANSSEN, R. Radar Time Series Analysis Over West Anatolia. Fringe 2009, p. 1–6, 2009.

ASF. PALSAR RTC DEM Information. 2023. Disponivel em: < https://asf.alaska.edu/information/palsar-rtc-dem-information/>. Acesso em: 21 de nov de 2023.

ASLAN, G.; FOUMELIS, M.; RAUCOULES, D.; DE MICHELE, M.; BERNADIE, S.; CAKIR, Z. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French alps. Remote Sensing, v. 12, n. 8, 2020. DOI: 10.3390/rs12081305.

BERARDINO, P.; FORNARO, G.; LANARI, R.; SANSOSTI, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, v. 40, n. 11, p. 2375–2383, 2002. DOI: 10.1109/TGRS.2002.803792.

BLANCO-SÁNCHEZ, P.; MALLORQUÍ, J. J.; DUQUE, S.; MONELLS, D. The coherent pixels technique (CPT): An advanced DInSAR technique for nonlinear deformation monitoring. Pure and Applied Geophysics, v. 165, n. 6, p. 1167–1193, 2008. DOI: 10.1007/s00024-008-0352-6.

BLASCO, J. M. D.; FOUMELIS, M.; STEWART, C.; HOOPER, A. Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sensing, v. 11, n. 2, p. 1–17, 2019. DOI: 10.3390/rs11020129.

BRAMANTO, B.; GUMILAR, I.; SIDIQ, T. P.; RAHMAWAN, Y. A.; ABIDIN, H. Z. Geodetic evidence of land subsidence in Cirebon, Indonesia. Remote Sensing Applications: Society and Environment, v. 30, n. October 2022, p. 100933, 2023. DOI: 10.1016/j.rsase.2023.100933.

CARLÀ, T.; FARINA, P.; INTRIERI, E.; KETIZMEN, H.; CASAGLI, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Engineering Geology, v. 235, n. January, p. 39–52, 2018.DOI: 10.1016/j.enggeo.2018.01.021.

CENNI, N.; FIASCHI, S.; FABRIS, M. Monitoring of land subsidence in the river delta (Northern Italy) using geodetic networks. Remote Sensing, v. 13, n. 8, 2021. DOI: 10.3390/rs13081488.

CHEN, Y.; REMY, D.; FROGER, J. L; PELTIER, A.; VILLENEUVE, N.; DARROZES, J.; PERFETTINI, H.; BONVALOT, S. Long-term ground displacement observations using InSAR and GNSS at Piton de la Fournaise volcano between 2009 and 2014. Remote Sensing of Environment, v. 194, 2017, p. 230–247, 2017. DOI: 10.1016/j.rse.2017.03.038.

CHOUDHURY, P.; GAHALAUT, K.; DUMKA, R.; GAHALAUT, V.K.; SINGH, A.K.; KUMAR, S. GPS measurement of land subsidence in Gandhinagar, Gujarat (Western India), due to groundwater depletion. Environmental Earth Sciences, v. 77, n. 22, p. 1–5, 2018. DOI: 10.1007/s12665-018-7966-5.

COLESANTI, C.; FERRETTI, A.; PRATI, C.; ROCCA, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, v. 68, n. 1–2, p. 3–14, 2003. DOI: 10.1016/S0013-7952(02)00195-3.

CROSETTO, M.; MONSERRAT, O.; CUEVAS-GONZÁLEZ, M.; DEVANTHÉRY, N.; CRIPPA, B. Persistent Scatterer Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, v. 115, p. 78–89, 2016.DOI: 10.1016/j.isprsjprs.2015.10.011.

CROSETTO, M.; MONSERRAT, O.; IGLESIAS, R.; CRIPPA, B. Persistent Scatterer Interferometry: Potential, limits and initial C- and X-band comparison. Photogrammetric Engineering and Remote Sensing, v. 76, n. 9, p. 1061–1069, 2010. DOI: 10.14358/PERS.76.9.1061.

CRUDEN, D. M.; VARNES, D. J. Landslide Types and Processes. In: A. K. Turner; R. L. Schuster (Orgs.); Landslides Investigation and Mitigation (Special Report 247). p.36–75, 1996.

CURLANDER, J. C.; MCDONOUGH, R. N. Synthetic aperture Radar Systems and Signal Processing. New York, 1991.

CZIKHARDT, R.; PAPCO, J.; BAKON, M.; LISCAK, P.; ONDREJKA, P.; ZLOCHA, M.. Ground stability monitoring of undermined and landslide prone areas by means of sentinel-1 multi-temporal InSAR, case study from Slovakia. Geosciences (Switzerland), v. 7, n. 3, p. 1–17, 2017. DOI:10.3390/geosciences7030087.

DECLERCQ, P.-Y.; DUSAR, M.; PIRARD, E.; VERBEURGT, J.; CHOOPANI, A.; DEVLEESCHOUWER, X. . Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sensing, v. 15, n. 3, p. 725, 2023. DOI: 10.3390/rs15030725

DIAS, P.; CATALAO, J.; MARQUES, F. O. Sentinel-1 InSAR data applied to surface deformation in Macaronesia (Canaries and Cape Verde). Procedia Computer Science. Anais... . v. 138, p.382–387, 2018. DOI: 10.1016/j.procs.2018.10.054.

DING, L.; LI, C.; WEI, L.; GUO, Z.; JIA, P.; WANG, W.; GAO, Y.. Slope Deformation Prediction Based on MT-InSAR and Fbprophet for Deep Excavation Section of South–North Water Transfer Project. Sustainability (Switzerland), v. 14, n. 17, 2022. DOI: 10.3390/su141710873

DROZ, P.; FUMAGALLI, A.; NOVALI, F.; YOUNG, B. GPS and Insar Technologies: a Joint Approach for the Safety of Lake Sarez. Proceedings of the 4th Canadian Conference on Geohazards: From Causes to Management, , n. Component C, p. 20–24, 2008.

DU, Z. Mapping Earth Surface Deformation using New Time Series Satellite Radar Interferometry, 2017. 226 p. Thesis. Geoscience and Earth Observing Systems Group. The University of New South Wales. Sydney, 2017.

DUMKA, R. K.; SURIBABU, D.; NARAIN, P.; KOTHYARI, G.; TALOOR, A. K.; PRAJAPATI, S. PSInSAR and GNSS derived deformation study in the west part of Narmada Son Lineament (NSL), western India. Quaternary Science Advances, v. 4, p. 100035, 2021. DOI: 10.1016/j.qsa.2021.100035.

ESA. The Sentinel-1 Toolbox. Disponível em: <https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1>. Acesso em: 21 out. 2022.

ESA. Sentinel Overview. Disponível em: <https://sentinels.copernicus.eu/web/sentinel/missions>. Acesso em: 18 out. 2023.

FAROLFI, G.; DEL SOLDATO, M.; BIANCHINI, S.; CASAGLI, N. A procedure to use GNSS data to calibrate satellite PSI data for the study of subsidence:an example from the north-western Adriatic coast (Italy). European Journal of Remote Sensing, v. 52, n. sup4, p. 54–63, 2019. DOI: 10.1080/22797254.2019.1663710.

FELIPE, S. Características Geológico Geotécnicas na Formação Guabirotuba Curitiba. MINEROPAR - Serviço Geológico do Paraná, v. 1a Edição, n. CDU: 624.13, p. 48, 2011.

FERRETTI, A.; FUMAGALLI, A.; NOVALI, F.; PRATI, C.; RUCCI, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, v. 49, n. 9, p. 3460–3470, 2011. DOI: 10.1109/TGRS.2011.2124465.

FERRETTI, A.; MONTI-GUARNIERI, A.; PRATI, C.; ROCCA, F. InSAR Principles : Guidelines for SAR Interferometry Processing and Interpretation. The Netherlands: ESA Publications, 2007.

FERRETTI, A.; PRATI, C.; ROCCA, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, v. 38, n. 5 I, p. 2202–2212, 2000. DOI: 10.1109/36.868878.

FERRETTI, A.; PRATI, C.; ROCCA, F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, v. 39, n. 1, p. 8–20, 2001. DOI: 10.1109/36.898661.

FIASCHI, S.; MANTOVANI, M.; FRIGERIO, S.; PASUTO, A.; FLORIS, M. Testing the potential of Sentinel-1A TOPS interferometry for the detection and monitoring of landslides at local scale (Veneto Region, Italy). Environmental Earth Sciences, v. 76, n. 14, p. 1–13, 2017. DOI: 10.1007/s12665-017-6827-y.

FOUMELIS, M.; BLASCO, J. M. D.; DESNOS, Y. L.; ENGDAHL, M.; FERNÁNDEZ, D.; VECI, L.; LU, J.; WONG, C. ESA SNAP - Stamps integrated processing for Sentinel-1 persistent scatterer interferometry. International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, n. 1, p. 1364–1367, 2018. DOI: 10.1109/IGARSS.2018.8519545.

FRANGIONI, S. Applications of SAR Interferometry for Monitoring Ground Deformations and Engineering Infrastructure, 2014. Thesis. Dottorato Di Ricerca in Scienze della Terra. Università Degli Studi Firenze. Parc Mediterrani de la Tecnologia.2014.

GEOTURISMOBRASIL. Geologia de Curitica. , 2020. Curitiba.Disponível em: <http://www.geoturismobrasil.com/Material didatico/Geologia de Curitiba.pdf>. Acesso em: 18 jan. 2022.

GRASSI, F.; MANCINI, F. Sentinel-1 data for ground deformation monitoring: the SNAP-StaMPS workflow. Dief, , n. July 2019, p. 20–25, 2019.

GUO, J.; HU, J.; LI, B.; ZHOU, L.; WANG, W. Land subsidence in Tianjin for 2015 to 2016 revealed by the analysis of Sentinel-1A with SBAS-InSAR. Journal of Applied Remote Sensing, v. 11, n. 2, p. 026024, 2017. DOI: 10.1117/1.jrs.11.026024.

GUO, L.; GONG, H.; LI, J.; ZHU, L.; XUE, A.; LIAO, L.; SUN, Y.; LI, Y.; ZHANG, Z.; GAO, M.; ZHAO, C.; CHENG, R.; ZHOU, J. Understanding Uneven Land Subsidence in Beijing, China, Using a Novel Combination of Geophysical Prospecting and InSAR. Geophysical Research Letters, v. 47, n. 16, p. 1–11, 2020. DOI: 10.1029/2020GL088676.

HANSSEN, R. F. Radar Interferometry: Data Interpretation and Error Analysis. 1o ed. Dordrecht: Springer Netherlands, 2001. DOI: 10.1007/0-306-47633-9.

HANSSEN, R. F. Satellite radar interferometry for deformation monitoring: A priori assessment of feasibility and accuracy. International Journal of Applied Earth Observation and Geoinformation, v. 6, n. 3–4, p. 253–260, 2005. DOI: 10.1016/j.jag.2004.10.004.

HASTAOGLU, K. O. Comparing the results of PSInSAR and GNSS on slow motion landslides, Koyulhisar, Turkey. Geomatics, Natural Hazards and Risk, v. 7, n. 2, p. 786–803, 2016. DOI: 10.1080/19475705.2014.978822.

HERNDON, K.; MEYER, F.; FLORES, A.; CHERRINGTON, E.; KUCERA, L. What is Synthetic Aperture Radar? Disponível em: <https://earthdata.nasa.gov/learn/backgrounders/what-is-sar>. Acesso em: 18 out. 2023.

HERRING, T. A.; KING, R. W.; FLOYD, M. A.; MCCLUSKY, S. C. GAMIT Reference Manual Release 10.7. Massachusetts Institute of Technological, Cambridge, Massachusetts. , , n. June, p. 1–168, 2018.

HIGHLAND, L. M.; BOBROWSKY, P. The landslide Handbook - A guide to understanding landslides. US Geological Survey Circular, , n. 1325, p. 1–147, 2008.

HOOPER, A.; SEGALL, P.; ZEBKER, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, v. 112, n. 7, p. 1–21, 2007. DOI: 10.1029/2006JB004763.

HOOPER, A.; SPAANS, K.; BEKAERT, D.; CUENCA, C.M.; ARIKAN, M.; OYEN, A. StaMPS/MTI Manual. , p. 1–35, 2010.

HU, B.; CHEN, J.; ZHANG, X. Monitoring the land subsidence area in a coastal urban area with InSAR and GNSS. Sensors (Switzerland), v. 19, n. 14, p. 1–19, 2019. DOI: 10.3390/s19143181.

HU, X.; LU, Z.; PIERSON, T. C.; KRAMER, R.; GEORGE, D. L. Combining InSAR and GPS to Determine Transient Movement and Thickness of a Seasonally Active Low-Gradient Translational Landslide. Geophysical Research Letters, v. 45, n. 3, p. 1453–1462, 2018. DOOI: 10.1002/2017GL076623.

IAT. Mapeamento Geológico - MINEROPAR. Disponível em: <http://www.iat.pr.gov.br/Pagina/Mapeamento-Geologico>. Acesso em: 21/10/2021.

IBGE. IBGE Cidadades - Curitiba. Disponível em: <https://cidades.ibge.gov.br/brasil/pr/curitiba/panorama>. Acesso em: 19/10/2021.

IQBAL, M. A.; ANGHEL, A.; DATCU, M. On the De-Ramping of SLC-IW Tops SAR Data and Ocean Circulation Parameters Estimation. International Geoscience and Remote Sensing Symposium (IGARSS), v. 2022-July, p. 6817–6820, 2022. DOI:10.1109/IGARSS46834.2022.9884331.

KOMAC, M.; HOLLEY, R.; MAHAPATRA, P.; VAN DER MAREL, H.; BAVEC, M. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides, v. 12, n. 2, p. 241–257, 2015. DOI: 10.1007/s10346-014-0482-0.

KUMAR MAURYA, V.; DWIVEDI, R.; RANJAN MARTHA, T. Site scale landslide deformation and strain analysis using MT-InSAR and GNSS approach – A case study. Advances in Space Research, v. 70, n. 12, p. 3932–3947, 2022. DOI: 10.1016/j.asr.2022.05.028.

LI, C.; FERNNANDEZ-STEEGER, T. M.; LINK, J. Á. B.; MAY, M.; AZZAM, R. Use of mems accelerometers/inclinometers as a geotechnical monitoring method for ground subsidence. Acta Geodynamica et Geomaterialia, v. 11, n. 4, p. 337–349, 2014. DOI: 10.13168/AGG.2014.0015.

DE LIMA, F. M.; FERNANDES, L. A.; DE MELO, M. S.; GÓES, A. M.; MACHADO, D. A. M. Faciologia e contexto deposicional da Formação Guabirotuba, Bacia de Curitiba (PR). Brazilian Journal of Geology, v. 43, n. 1, p. 168–184, 2013. DOI: 10.5327/Z2317-48892013000100014.

LIU, G.; LUO, X.; CHEN, Q.; HUANG, D.; DING, X. Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors, v. 8, n. 8, p. 4725–4741, 2008.

LIU, H.; HUANG, S.; XIE, C.; TIAN, B.; CHEN, M.; CHANG, Z. Monitoring Roadbed Stability in Permafrost Area of Qinghai–Tibet Railway by MT-InSAR Technology. Land, v. 12, n. 2, p. 474, 2023. DOI: 10.3390/land12020474.

LU, L.; FAN, H.; LIU, JIE; LIU, JIULI; YIN, J. Time series mining subsidence monitoring with temporarily coherent points interferometry synthetic aperture radar: a case study in Peixian, China. Environmental Earth Sciences, v. 78, n. 15, p. 1–17, 2019. DOI: 10.1007/s12665-019-8475-x.

DE LUNA, R. M. R.; DOS ANJOS GARNÉS, S. J.; DA SILVA PEREIRA CABRAL, J. J.; DOS SANTOS, S. M. Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area. Natural Hazards, v. 106, n. 3, p. 1821–1837, 2021. DOI: 10.1007/s11069-021-04513-2.

LUO, Q.; LI, J.; ZHANG, Y. Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sensing, v. 14, n. 17, 2022. DOI: 10.3390/rs14174138.

LUO, S.; FENG, G.; XIONG, Z.;WANG, H.; ZHAO, Y.; LI, K.; DENG, K.; WANG, Y.. An improved method for automatic identification and assessment of potential geohazards based on mt-insar measurements. Remote Sensing, v. 13, n. 17, 2021. DOI: 10.3390/rs13173490.

MANDAL, D.; VAKA, D. S.; BHOGAPURAPU, N. R.; VANMA, V.S. K.; KUMAR, V.; RAO, Y.S.; BHATTACHARYA, A.. Sentinel-1 SLC preprocessing workflow for polarimetric applications: A generic practice for generating dual-pol covariance matrix elements in SNAP S-1 Toolbox. Preprints, , n. November, p. 2019110393, 2019. DOI: 10.20944/preprints201911.0393.v1.

MANTOVANI, M.; BOSSI, G.; DYKES, A. P.; PASUTO, A.; SOLDATI, M.; DEVOTO, S.. Coupling long-term GNSS monitoring and numerical modelling of lateral spreading for hazard assessment purposes. Engineering Geology, v. 296, n. September 2021, p. 106466, 2022. DOI: 10.1016/j.enggeo.2021.106466.

MEDHAT, N. I.; YAMAMOTO, M. Y.; ICHIHASHI, Y. Inclinometer and Improved SBAS Methods with a Random Forest for Monitoring Landslides and Anchor Degradation in Otoyo Town, Japan. Remote Sensing, v. 15, n. 2, p. 1–18, 2023. DOI: 10.3390/rs15020441.

MINEROPAR. Atlas Comentado da Geologia e do Recursos Minerais do Estado do Paraná. Curitiba, 2001.

MOREIRA, A.; PRATS-IRAOLA, P.; YOUNIS, M.; KRIEGER, G.; HAJNSEK, I.; PAPATHANASSIOU, K.P.. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, v. 1, n. 1, p. 6–43, 2013. DOI: 10.1109/MGRS.2013.2248301.

OPENSTREETMAP. OpenStreetMap. Disponível em: <https://www.openstreetmap.org/>. Acesso em: 25 out. 2021.

PARIZZI, A.; GONZALEZ, F. R.; BRCIC, R. A covariance-based approach to merging InSAR and GNSS displacement rate measurements. Remote Sensing, v. 12, n. 2, 2020. DOI: 10.3390/rs12020300.

PELTIER, A.; BIANCHI, M.; KAMINSKI, E.; KOMOROWSKI, C.; RUCCI, A.; STAUDACHER, T. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de La Fournaise. Geophysical Research Letters, v. 37, n. 12, p. 1–5, 2010. DOI: 10.1029/2010GL043846

PERISSIN, D.; WANG, Z.; WANG, T. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. 34th International Symposium on Remote Sensing of Environment - The GEOSS Era: Towards Operational Environmental Monitoring, 2011.

PEZZO, G.; PALANO, M.; BECCARO, L.; TOLOMEU, C.; ALBANO, M.; ATZORI, S.; CHIARABBA, C.. Coupling Flank Collapse and Magma Dynamics on Stratovolcanoes: The Mt. Etna Example from InSAR and GNSS Observations. Remote Sensing, v. 15, n. 3, 2023. DOI: 10.3390/rs15030847.

QU, F.; LU, Z.; ZHANG, Q.; BAWDEN, G. W.; KIM, J-W.; ZHAO, C.; QU, W. Mapping ground deformation over Houston-Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, v. 169, p. 290–306, 2015. DOI: 10.1016/j.rse.2015.08.027.

ROQUE, D.; SIMONETTO, E.; FALCÃO, A. P.; PERISSIN, D.; DURAND, F.; MOREL, L.; FONSECA, A.M.; POLIDORI, L. An analysis of displacement measurements for Lisbon, Portugal, using combined InSAR and GNSS data. European Space Agency, (Special Publication) ESA SP, v. SP-740, n. 1, 2016.

ROSA FILHO, E. F. DA; HINDI, E. C.; LUCENA, L. R. F. DE. Os Aquíferos Que Contribuem No Abastecimento Da Cidade De Curitiba-Paraná. Águas Subterrâneas, v. 16, n. 1, p. 1–6, 2002.

RUIZ-ARMENTEROS, A. M.; LAZECKY, M.; HLAVÁČOVÁ, I.; DELGADO, J., M.; SOUSA, J.J.; LAMAS-FERNÁNDEZ, F; PERISSIN, D.. Deformation monitoring of dam infrastructures via spaceborne MT-InSAR. The case of La Viñuela (Málaga, southern Spain). Procedia Computer Science, v. 138, p. 346–353, 2018. DOI: 10.1016/j.procs.2018.10.049.

RUIZ-ARMENTEROS, A. M.; LAZECKY, M.; RUIZ-CONSTÁN, A.;. Monitoring continuous subsidence in the Costa del Sol (Málaga province, southern Spanish coast) using ERS-1/2, Envisat, and Sentinel-1A/B SAR interferometry. Procedia Computer Science, v. 138, p. 354–361, 2018. DOI: 10.1016/j.procs.2018.10.050.

SALAMUNI, E. Tectônica Da Bacia Sedimentar De Curitiba (PP)Instituto de Geociências e Ciências Exatas - Unesp, 1998.

SIMONETTO, E.; DURAND, S.; BURDACK, J.; POLIDORI, L.; MOREL, L.; NICOLAS-DUROY, J. Combination of INSAR and GNSS Measurements for Ground Displacement Monitoring. Procedia Technology, v. 16, p. 192–198, 2014. DOI: 10.1016/j.protcy.2014.10.083.

SINGH VIRK, A.; SINGH, A.; MITTAL, S. K. Advanced MT-InSAR Landslide Monitoring: Methods and Trends. Journal of Remote Sensing & GIS, v. 07, n. 01, p. 1–6, 2018.

SNEED, M.; BRANDT, J. T. Detection and Measurement of Land Subsidence Using Global Positioning System Surveying and Interferometric Synthetic Aperture Radar, Coachella Valley, California, 1996–2005. USGS, , n. June, p. 1996–2005, 2013.

DEL SOLDATO, M.; CONFUORTO, P.; BIANCHINI, S.; SBARRA, P.; CASAGLI, N. Review of works combining GNSS and insar in Europe. Remote Sensing, v. 13, n. 9, 2021. DOI: 10.4172/2469-4134.1000225.

TANG, Y.; WANG, C.; ZHANG, H.; TAO, L. Subsidence monitoring using ascending and descending SAR data based on coherent target DInSAR. Sixth International Symposium on Digital Earth: Data Processing and Applications, v. 7841, n. November 2010, p. 78410J, 2009. DOI: 10.1117/12.873214

TEIXEIRA, W.; TOLEDO, M. C. M. DE; FAIRCHILD, T. R.; TAIOLI, F. Decifrando a Terra. São Paulo, 2003.

TEMPORIM, F. A.; GAMA, F. F.; MURA, J. C.; PARADELLA, W. R.; SILVA, G. G. Application of persistent scatterers interferometry for surface displacements monitoring in N5E open pit iron mine using TerraSAR-X data, in Carajás Province, Amazon region. Brazilian Journal of Geology, v. 47, n. 2, p. 225–235, 2017. DOI: 10.1590/2317‑4889201720170006.

USTUN, A.; TUSAT, E.; YALVAC, S. Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006-2009 by means of GNSS observations. Natural Hazards and Earth System Science, v. 10, n. 6, p. 1151–1157, 2010. DOI:10.5194/nhess-10-1151-2010.

VAZQUEZ-ONTIVEROS, J. R.; MARTINEZ-FELIX, C. A.; VAZQUEZ-BECERRA, G. E.; GAXIOLA-CAMACHO, J.R>; MELGAREJO-MORALES, A.; PADILLA-VELAZCO, J. Monitoring of local deformations and reservoir water level for a gravity type dam based on GPS observations. Advances in Space Research, v. 69, n. 1, p. 319–330, 2022. DOI: 10.1016/j.asr.2021.09.018.

VESTENA, L. R.; KOBIYAMA, M.; SANTOS, L. J. C. Considerações sobre gestão ambiental em áreas cársticas. RA’E GA - O Espaco Geografico em Analise, v. 6, n. 6, p. 81–93, 2002. DOI: 10.5380/raega.v6i0.18518.

WANG, G.; GREUTER, A.; PETERSEN, C. M.; TURCO, M. J. Houston GNSS Network for Subsidence and Faulting Monitoring: Data Analysis Methods and Products. Journal of Surveying Engineering, v. 148, n. 4, p. 1–20, 2022. DOI: 10.1061/(ASCE)SU.1943-5428.0000399.

WANG, G.; ZHOU, X.; WANG, K.; KE, X.; ZHANG, Y.; ZHAO, R.; BAO, Y. GOM20: A stable geodetic reference frame for subsidence, faulting, and sea-level rise studies along the coast of the Gulf of Mexico. Remote Sensing, v. 12, n. 3, 2020. DOI: 10.3390/rs12030350.

WERLICH, R. M. C. Análise de Alternativas de Processamento GPS para Detecção de Deslocamentos Verticais de Terra em Áreas Urbanizadas, Tese (Doutorado em Ciências Geodésicas) - Universidade Federal do Paraná, Curitiba, Paraná, 2017.

WERNER, C.; WEGMÜLLER, U.; STROZZI, T.; WIESMANN, A. Interferometric Point Target Analysis for Deformation Mapping. International Geoscience and Remote Sensing Symposium (IGARSS), v. 7, n. 1, p. 4362–4364, 2003. DOI: 10.1109/igarss.2003.1295516.

YALVAC, S. Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium- and high-grade deformation areas. Environmental Monitoring and Assessment, 2020.DOI: 10.1007/s10661-019-8009-8.

YIN, Y.; ZHENG, W.; LIU, Y.; ZHANG, J.; LI, X. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides, v. 7, n. 3, p. 359–365, 2010. DOI: 10.1007/s10346-010-0225-9.

YUWONO, B.; AWALUDDIN, M.; . N. Land Subsidence monitoring 2016 - 2018 analysis using GNSS CORS UDIP and DinSAR in Semarang. KnE Engineering, v. 2019, p. 95–105, 2019. DOI: 10.18502/keg.v4i3.5832.

DE ZAN, F.; GUARNIERI, A. M. TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing, v. 44, n. 9, p. 2352–2360, 2006. DOI: 10.1109/TGRS.2006.873853.

ZHANG, Y.; MENG, X. M.; DIJKSTRA, T. A.; JORDAN, C.J.; CHEN, G.; ZENG, R.Q. NOVELLINO, A. Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sensing of Environment, v. 241, n. February, p. 111738, 2020. DOI: 10.1016/j.rse.2020.111738.

ZHAO, R.; WANG, G.; YU, X.; SUN, X.; BAO, Y.; GAN, G.; SHEN, S. Rapid Land Subsidence in Tianjin, China Derived from Continuous GPS Observations (2010-2019). Proceedings of the International Association of Hydrological Sciences, v. 382, p. 241–247, 2020. DOI: 10.5194/piahs-382-241-2020.

ZHOU, C.; LAN, H.; BÜRGMANN, R.; WARNER, T.A.; CLAGUE, J.J.; LI, L.; WU, Y.; ZHAO, X.; ZHANG, Y.; YAO, J. Application of an improved multi-temporal InSAR method and forward geophysical model to document subsidence and rebound of the Chinese Loess Plateau following land reclamation in the Yan’an New District. Remote Sensing of Environment, v. 279, n. June, p. 113102, 2022. DOI:10.1016/j.rse.2022.113102.

ZHU, W.; ZHANG, Q.; DING, X.; ZHAO, C.; YANG, C., QU, F.; QU, W. Landslide monitoring by combining of CR-InSAR and GPS techniques. Advances in Space Research, v. 53, n. 3, p. 430–439, 2014. DOI: 10.1016/j.asr.2013.12.003.

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 > >>