ITACaRT: An Equal-Area Parallelogram Discrete Global Grid System for Terrestrial Cadastral Mapping—Designed for Usability and Blockchain Integration

Conteúdo do artigo principal

Israel Nunes da Silva
https://orcid.org/0009-0006-4168-1043
Gabriel Dietzsch
https://orcid.org/0000-0001-7241-2416
Elcio Hideiti Shiguemori
https://orcid.org/0000-0001-5226-0435

Resumo

Typically, the modernization of Land Administration Systems (LAS) concentrates on overarching aspects and seldom investigates the spatial infrastructure that underpins it, thereby presenting challenges for the integration of geospatial data. For this purpose, Discrete Global Grid Systems (DGGS), characterized by its "congruent cartography", offer a promising solution within a multi-scale reference framework. Moreover, a significant gap exists in the absence of a DGGS designed to address the cartographic focus and usability requirements for land administration, such as equal-area sizing and geodetic precision. Developed at the Aeronautics Institute of Technology (ITA), the ITA Cadastral Ellipsoidal Reference Tessellation (ITACaRT) was introduced as an innovative DGGS to bridge this gap. The development of ITACaRT was guided by several key criteria, including its suitability for cadastral purposes at appropriate scales, compatibility with the WGS84 ellipsoid and Global Navigation Satellite Systems (GNSS), utilization of simple parallelogram-shaped equal-area cells, a direct tessellation adhering to Cartesian geometry for usability by geoinformation professionals, and decimal convergence to facilitate blockchain tokenization. Complementary to these criteria, a Compositional Hierarchical Indexing system was devised to represent cadastral vector features more efficiently than the atomic identifiers typical of conventional DGGS. ITACaRT thus establishes a solid foundation for contemporary LAS, providing a viable spatial infrastructure that supports emerging technologies such as blockchain.

Downloads

Download data is not yet available.

Detalhes do artigo

Seção

Seção Especial "Brazilian Symposium on GeoInformatics - GEOINFO 2025"

Biografia do Autor

Israel Nunes da Silva, Instituto Tecnológico da Aeronáutica

Israel Nunes da Silva is a Master’s student in Space Sciences and Technologies at the Aeronautics Institute of Technology (ITA) in São José dos Campos, Brazil. He is an Officer in the Brazilian Air Force, where he has worked since 2015 with geoprocessing and real estate management. He holds degrees in Cartographic and Surveying Engineering from the Federal University of Paraná (UFPR, 2014) and in Systems Analysis and Development from Mackenzie Presbyterian University (2021). His primary research interests include Discrete Global Grid Systems (DGGS) and small Unmanned Aerial Vehicles (UAVs) applications.

Gabriel Dietzsch, Instituto de Estudos Avançados

Doutorando em Computação Aplicada com ênfase em Inteligência Artificial, no Instituto Nacional de Pesquisas Espaciais (INPE). Mestre em Engenharia de Computação com ênfase em Geomática pela Universidade do Estado do Rio de Janeiro (2012). Graduado em Engenharia Cartográfica pela Universidade Federal do Paraná (2007). Experiência na área de Geociências e atualmente é Chefe da Divisão de C4ISR do Instituto de Estudos Avançados (IEAv), do Departamento de Ciência e Tecnologia da Aeronáutica (DCTA) e atua em pesquisas em C2 (Comando e Controle). Atuou no Instituto de Cartografia Aeronáutica como da Chefe Subdivisão de Cartografia, da Seção de Fotogrametria, Seção de Cartas Visuais, Seção de zona de Proteção de Aeródromos e da Seção de Operações de Campo. Membro da CONCAR (Comissão Nacional de Cartografia). Grau de Cavaleiro na Ordem do Mérito Cartográfico. Mérito Santos Dumont.

Elcio Hideiti Shiguemori, Instituto de Estudos Avançados

É Pesquisador do Instituto de Estudos Avançados (IEAv) do Departamento de Ciência e Tecnologia Aeroespacial (DCTA). Doutor em computação aplicada pelo Instituto Nacional de Pesquisas Espaciais (INPE) (2007). Mestre em Computação Aplicada pelo INPE (2002), possui graduação em Engenharia da Computação (1998) e em Ciências da Computação pela UBC (1999). É docente no programa de Pós-Graduação em Computação Aplicada do INPE e docente no programa de Pós-graduação PG-CTE do ITA. É professor na Universidade Paulista (UNIP) e coordenador do curso de Engenharia da Computação. Tem experiência na área de Computação, atuando principalmente nos seguintes temas: Inteligência Artificial, Aprendizagem de Máquina, Ciência dos Dados, Navegação Aérea Autônoma, Processamento de Imagens e Visão Computacional.

Como Citar

NUNES DA SILVA, Israel; DIETZSCH, Gabriel; HIDEITI SHIGUEMORI, Elcio. ITACaRT: An Equal-Area Parallelogram Discrete Global Grid System for Terrestrial Cadastral Mapping—Designed for Usability and Blockchain Integration. Revista Brasileira de Cartografia, [S. l.], v. 77, n. 0a, 2025. DOI: 10.14393/rbcv77n0a-79281. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/79281. Acesso em: 4 fev. 2026.

Referências

Benahmed Daho, A. (2020). CRYPTO-SPATIAL: An open standards smart contracts library for building geospatially enabled decentralized applications on the Ethereum blockchain. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020, 421–426. https://doi.org/10.5194/isprs-archives-xliii-b4-2020-421-2020

Bondaruk, B., Roberts, S. A., & Robertson, C. (2020). Assessing the state of the art in Discrete Global Grid Systems: OGC criteria and present functionality. Geomatica, 74(1), 9–30. https: //doi.org/10.1139/geomat-2019-0015

Cheng, C., Tong, X., Chen, B., & Zhai, W. (2016). A subdivision method to unify the existing latitude and longitude grids. ISPRS International Journal of Geo-Information, 5(9), 161. https://doi.org/10.3390/ijgi5090161

Cooper, A. K., van Huyssteen, E., Das, S., Coetzee, M., & Mans, G. (2014). Assessment of spatial data infrastructures. Town and Regional Planning, 64, 65–75.

Dawidowicz, A., & Źróbek, R. (2017). Land administration system for sustainable development: Case study of Poland. Real Estate Management and Valuation, 25(1), 112–122. https://doi.org/10.1515/remav-2017-0008

Gibb, R. (2016). The rHEALPix Discrete Global Grid System. IOP Conference Series: Earth and Environmental Science, 34, 012012. https://doi.org/10.1088/1755-1315/34/1/012012

Gibb, R. (2021). Topic 21 - Discrete Global Grid Systems - Part 1 Core Reference system and Operations and Equal Area Earth Reference System (OGC Discussion Paper No. 20-040r3). Open Geospatial Consortium. https://doi.org/10.62973/20-040r3

Goodchild, M. F. (2018). Reimagining the history of GIS. Annals of GIS, 24(1), 1–8. https://doi.org/10.1080/19475683.2018.1424737

Goodchild, M. F., Guo, H., Annoni, A., Bian, L., Bie, K., Campbell, F., Craglia, M., Ehlers, M., van Genderen, J., Jackson, D., Lewis, A., Pesaresi, M., Remetey-Fülöpp, G., Simpson, R., Skidmore, A., Wang, C., & Woodgate, P. (2012). Next-eneration Digital Earth. Proceedings of the National Academy of Sciences of the United States of America, 109, 11088–11094.

https://doi.org/10.1073/pnas.1202383109

Hobona, G.,&De Lathouwer, B. (2018). Geospatial standardization of Distributed Ledger Technologies (OGC Discussion Paper No. OGC 18-041r1). Open Geospatial Consortium. http://www.opengis.net/doc/DP/dlt-blockchain-review

Hojati, M., Robertson, C., Roberts, S., & Chaudhuri, C. (2022). GIScience research challenges for realizing discrete global grid systems as a Digital Earth. Big Earth Data, 6(3), 358–379. https://doi.org/10.1080/20964471.2021.2012912

Jenny, B., Jenny, H., & Räber, S. (2008). Map design for the Internet. In W. Cartwright, G. Gartner, L. Meng, & M. P. Peterson (Eds.), International perspectives on maps and the Internet (pp. 31–48). Springer. https://doi.org/10.1007/978-3-540-72029-4_3

Kan, B., Zhu, W., Liu, G., Chen, X., Shi, D., & Yu, W. (2017). Topology modeling and analysis of a power grid network using a graph database. International Journal of Computational Intelligence Systems, 10(1), 1355–1363. https://doi.org/10.2991/ijcis.10.1.96

Kimerling, A. J., Sahr, K., White, D., & Song, L. (1999). Comparing geometrical properties of global grids. Cartography and Geographic Information Science, 26(4), 271–288. https://doi.org/10.1559/152304099782294186

Li, M., & Stefanakis, E. (2020). Geospatial operations of Discrete Global Grid Systems—a comparison with traditional GIS. Journal of Geovisualization and Spatial Analysis, 4(2). https://doi.org/10.1007/s41651-020-00066-3

Ma, T., Zhou, C., Xie, Y., Qin, B., & Ou, Y. (2009). A discrete square global grid system based on the parallels plane projection. International Journal of Geographical Information Science, 23(10), 1297–1313. https://doi.org/10.1080/13658810802344150

Mahdavi-Amiri, A., Alderson, T., & Samavati, F. (2015). A survey of Digital Earth. Computers & Graphics, 53, 95–117. https://doi.org/10.1016/j.cag.2015.08.005

Peterson, P. R., Percivall, G., Purss, M. B. J., Samavati, F., & Gibb, R. (2015). Discrete Global Grid Systems - A Framework for the next Era in Big Earth Data. AGU Fall Meeting Abstracts, 2015, IN43B–1729.

Rajabifard, A. (Ed.). (2019). Sustainable Development Goals connectivity dilemma: Land and geospatial information for urban and rural resilience. CRC Press. https://doi.org/10.1201/9780429290626

Sahr, K., White, D., & Kimerling, A. J. (2003). Geodesic Discrete Global Grid Systems. Cartography and Geographic Information Science, 30(2), 121–134. https://doi.org /10.1559/152304003100011090

Silva, I. N., Shiguemori, E. H., & Dietzsch, G. (2025). Designing a parallelogram Discrete Global Grid System for terrestrial cadastral mapping. Proceedings of the Brazilian Symposium on GeoInformatics.

Snyder, J. P. (1987). Map Projections: A working manual. United States Government Printing Office.

Tobler, W. (1987). Measuring spatial resolution. Proceedings, Land Resources Information Systems Conference, 1, 12–16.

Tong, X. C., Ben, J., Liu, Y. Y., & Zhang, Y. S. (2013). Modeling and expression of vector data in the hexagonal Discrete Global Grid System. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W2, 15–25. https://doi.org/10.5194/isprsarchives-XL-4-W2-15-2013

White, D., Kimerling, A. J., Sahr, K., & Song, L. (1998). Comparing area and shape distortion on polyhedral-based recursive partitions of the sphere. International Journal of Geographical Information Science, 12(8), 805–827. https://doi.org/10.1080/136588198241518

Williamson, I. P., & Enemark, S. (1996). Understanding cadastral maps. Australian Surveyor, 41(1), 38–52. https://doi.org/10.1080/00050336.1996.10558593

Williamson, I. P., Enemark, S., Wallace, J., & Rajabifard, A. (Eds.). (2010). Land administration for sustainable development. Esri Press.

Yomralioglu, T., & McLaughlin, J. (Eds.). (2017). Cadastre: Geo-information innovations in land administration. Springer. https://doi.org/10.1007/978-3-319-51216-7

Zhou, C., Ma, T., Yang, L., & Qin, B. (2007). Parallels plane projection and its geometric features. Science in China Series D: Earth Sciences, 50(S1), 176–180. https://doi.org/10.1007/s11430-007-5011-8

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)