Machine Translation
approaches and limitations
DOI:
https://doi.org/10.14393/DL32-v11n5a2017-21Keywords:
Machine Translation, Computational Linguistics, Rule-based machine translation, Statistical machine translation, Neural machine translationAbstract
Machine Translation is one of the main fields and applications of Computational Linguistics (CL). In a machine translation system, the information in a source language, provided as input to the system, is transformed into an equivalent version in the target language. Despite more than 70 years of researches regarding machine translation field, the main approaches proposed have limitations. In this paper, we discuss three of these approaches: rule-based machine translation, statistical machine translation, and neural machine translation. In this article, we present a brief description of each approach, accompanied by examples that help to understand the limitations mentioned.Downloads
Metrics
References
ARMENTANO-OLLER, C.; CARRASCO, R. C.; CORBÍ-BELLOT, A. M.; FORCADA, M. L.; GINESTÍ-ROSELL, M.; ORTIZ-ROJAS, S.; PÉREZ-ORTIZ, J. A.; RAMÍREZ-SÁNCHEZ, G.; SÁNCHEZ-MARTÍNEZ, F.; SCALCO, M. A. Open-source Portuguese-Spanish machine translation. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL PROCESSING OF WRITTEN AND SPOKEN PORTUGUESE, 7., 2006, Itatiaia. Lecture Notes in Computer Science. Itatiaia: PROPOR, 2006, p. 50-59. https://doi.org/10.1007/11751984_6
AZIZ, W.; SPECIA, L. Fully Automatic Compilation of Portuguese-English and Portuguese-Spanish Parallel Corpora. In: BRAZILIAN SYMPOSIUM IN INFORMATION AND HUMAN LANGUAGE TECHNOLOGY, 8., 2011, Cuiabá. Proceedings…, Cuiabá: BSIHLT, 2011, p. 234-238.
BROWN, R. D. Example-Based Machine Translation in the Pangloss System. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL LINGUISTICS, 16., 1996, Copenhagen. Proceedings…, Copenhagen: COLING, 1996, p. 169-174. https://doi.org/10.3115/992628.992660
CASELI, H. M. Indução de léxicos bilíngües e regras para a tradução automática. Maio 2007. 158 p. Tese (Doutorado em Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. São Paulo, SP, 2007. https://doi.org/10.11606/T.55.2007.tde-29082007-090905
CASELI, H. M. Tradução automática: o uso de corpora paralelos para a criação de um tradutor automático estatístico. In: VIANA, V.; TAGNIN, S. E. O. (Org.). Corpora na tradução. 1ed. São Paulo: Hub editorial, 2015, p. 243-267.
CASELI, H. M.; NUNES, M. G. V.; FORCADA, M. L. Automatic induction of bilingual resources from aligned parallel corpora: application to shallow-transfer machine translation. Machine Translation, Amsterdam, v. 20, p. 227-245, 2006. https://doi.org/10.1007/s10590-007-9027-9
CHO, K.; MERRIENBOER, B. V.; GULCEHRE, C.; BAHDABAU, D.; BOUGARES, F.; SCHWENK, H.; BENGIO, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: CONFERENCE OF EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, Doha, 2014. Proceedings…, Doha: EMNLP, 2014, p. 1724-1734. https://doi.org/10.3115/v1/D14-1179
GALLEY, M.; HOPKINS, M.; KNIGHT, K.; MARCU, D. What's in a translation rule? In: HUMAN LANGUAGE TECHNOLOGY CONFERENCE AND MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 4., Edmonton, 2004. Proceedings…, Edmonton: HLT-NAACL, 2004, p. 273-280. https://doi.org/10.21236/ADA460212
GÜVENIR, H. A.; CICEKLI, I. Learning translation templates from examples. Information Systems, v. 23, n. 6, p. 353-363, 1998. https://doi.org/10.1016/S0306-4379(98)00017-9
HUTCHINS, W. J. Machine translation: A concise history. In: WAI, C. S. (Ed.) Computer Aided Translation: Theory and Practice. Hong Kong: Chinese University of Hong Kong, 2007. https://doi.org/10.1007/s10590-006-9003-9
JEAN, S.; CHO, K.; MEMISEVIC, R.; BENGIO, Y. On using very large vocabulary for neural machine translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 53., Beijing, 2015. Proceedings…, Beijing: ACL, 2015, p. 1-10. https://doi.org/10.3115/v1/P15-1001
KALCHBRENNER, N.; BLUNSOM, P. Recurrent continuous translation models. In: CONFERENCE OF EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, Washington, 2013. Proceedings…, Washington: EMNLP, 2013, p. 1700-1709.
KITAMURA, M. Translation knowledge acquisition for pattern-based machine translation. 2004, 114 f. Thesis (Doctorate) – Department of Information Processing, Graduate School of Information Science, Nara Institute of Science and Technology, 2004.
KOEHN, P.; OCH, F. J.; MARCU, D. Statistical phrase-based translation. In: HUMAN LANGUAGE TECHNOLOGY CONFERENCE AND MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 3., Edmonton, 2003. Proceedings…, Edmonton: HLT-NAACL, 2003, p. 127-133. https://doi.org/10.3115/1073445.1073462
KOEHN, P.; HOANG, H.; BIRCH, A.; CALLISON-BURCH, C.; FEDERICO, M.; BERTOLDI, N.; COWAN, B.; SHEN, W.; MORAN, C.; ZENS, R.; DYER, C.; BOJAR, O.; CONSTANTIN, A.; HERBST, E. Moses: Open Source Toolkit for Statistical Machine Translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 45., 2007, Prague. Proceedings…, Prague: ACL, 2007, p. 177-180.
LOPEZ, A. Statistical Machine Translation. ACM Computing Surveys, New York, v. 40, n. 3, p. 1-49, 2008. https://doi.org/10.1145/1380584.1380586
LUONG, M.; SUTSKEVER, I.; LE, V. Q.; VINYALS, O.; ZAREMBA, W. Addressing the rare word problem in neural machine translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 53., 2015, Lisbon. Proceedings…, Lisbon: ACL, 2015a, p. 11-19.
LUONG, M.; PHAM, H.; MANNING, C. D. Effective approaches to attention-based neural machine translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 53., 2015, Lisbon. Proceedings…, Lisbon: ACL, 2015b, p. 1412-1421. https://doi.org/10.18653/v1/D15-1166
LUONG, M.; MANNING, C. D. Achieving open vocabulary neural machine translation with hybrid word-character models. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 54., 2016, Berlin. Proceedings…, Berlin: ACL, 2016, p. 1054-1063. https://doi.org/10.18653/v1/P16-1100
LUONG, T.; CHO, K.; MANNING, C. Neural Machine Translation. Disponível em: http://nlp.stanford.edu/projects/nmt/Luong-Cho-Manning-NMT-ACL2016-v4.pdf. Acesso em: 17 out. 2016.
OCH, F. J.; NEY, H. The Alignment Template Approach to Statistical Machine Translation. Computational Linguistics, London, v. 30, n. 4, p. 417-449, 2004. https://doi.org/10.1162/0891201042544884
SENNRICH, R.; HADDOW, B.; BIRCH, A. Improving neural machine translation models with monolingual data. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 54., 2016, Berlin. Proceedings…, Berlin: ACL, 2016, p. 86-96. https://doi.org/10.18653/v1/P16-1009
SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to sequence learning with neural networds. In: INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS, 27., Montréal, 2014. Proceedings…, Montréal: NIPS, 2014, p. 3104-3112.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following terms:
Authors retain the copyright and waiver the journal the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution License (CC BY-NC-ND 4.0), allowing the sharing of work with authorship recognition and preventing its commercial use.
Authors are authorized to take additional contracts separately, for non-exclusive distribution of the version of the work published in this journal (publish in institutional repository or as a book chapter), with acknowledgment of authorship and initial publication in this journal.