Machine Translation

approaches and limitations

Authors

  • Helena de Medeiros Caseli Universidade Federal de São Carlos (UFSCar)

DOI:

https://doi.org/10.14393/DL32-v11n5a2017-21

Keywords:

Machine Translation, Computational Linguistics, Rule-based machine translation, Statistical machine translation, Neural machine translation

Abstract

Machine Translation is one of the main fields and applications of Computational Linguistics (CL). In a machine translation system, the information in a source language, provided as input to the system, is transformed into an equivalent version in the target language. Despite more than 70 years of researches regarding machine translation field, the main approaches proposed have limitations. In this paper, we discuss three of these approaches: rule-based machine translation, statistical machine translation, and neural machine translation. In this article, we present a brief description of each approach, accompanied by examples that help to understand the limitations mentioned.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ARMENTANO-OLLER, C.; CARRASCO, R. C.; CORBÍ-BELLOT, A. M.; FORCADA, M. L.; GINESTÍ-ROSELL, M.; ORTIZ-ROJAS, S.; PÉREZ-ORTIZ, J. A.; RAMÍREZ-SÁNCHEZ, G.; SÁNCHEZ-MARTÍNEZ, F.; SCALCO, M. A. Open-source Portuguese-Spanish machine translation. In: INTERNATIONAL WORKSHOP ON COMPUTATIONAL PROCESSING OF WRITTEN AND SPOKEN PORTUGUESE, 7., 2006, Itatiaia. Lecture Notes in Computer Science. Itatiaia: PROPOR, 2006, p. 50-59. https://doi.org/10.1007/11751984_6

AZIZ, W.; SPECIA, L. Fully Automatic Compilation of Portuguese-English and Portuguese-Spanish Parallel Corpora. In: BRAZILIAN SYMPOSIUM IN INFORMATION AND HUMAN LANGUAGE TECHNOLOGY, 8., 2011, Cuiabá. Proceedings…, Cuiabá: BSIHLT, 2011, p. 234-238.

BROWN, R. D. Example-Based Machine Translation in the Pangloss System. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL LINGUISTICS, 16., 1996, Copenhagen. Proceedings…, Copenhagen: COLING, 1996, p. 169-174. https://doi.org/10.3115/992628.992660

CASELI, H. M. Indução de léxicos bilíngües e regras para a tradução automática. Maio 2007. 158 p. Tese (Doutorado em Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. São Paulo, SP, 2007. https://doi.org/10.11606/T.55.2007.tde-29082007-090905

CASELI, H. M. Tradução automática: o uso de corpora paralelos para a criação de um tradutor automático estatístico. In: VIANA, V.; TAGNIN, S. E. O. (Org.). Corpora na tradução. 1ed. São Paulo: Hub editorial, 2015, p. 243-267.

CASELI, H. M.; NUNES, M. G. V.; FORCADA, M. L. Automatic induction of bilingual resources from aligned parallel corpora: application to shallow-transfer machine translation. Machine Translation, Amsterdam, v. 20, p. 227-245, 2006. https://doi.org/10.1007/s10590-007-9027-9

CHO, K.; MERRIENBOER, B. V.; GULCEHRE, C.; BAHDABAU, D.; BOUGARES, F.; SCHWENK, H.; BENGIO, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: CONFERENCE OF EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, Doha, 2014. Proceedings…, Doha: EMNLP, 2014, p. 1724-1734. https://doi.org/10.3115/v1/D14-1179

GALLEY, M.; HOPKINS, M.; KNIGHT, K.; MARCU, D. What's in a translation rule? In: HUMAN LANGUAGE TECHNOLOGY CONFERENCE AND MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 4., Edmonton, 2004. Proceedings…, Edmonton: HLT-NAACL, 2004, p. 273-280. https://doi.org/10.21236/ADA460212

GÜVENIR, H. A.; CICEKLI, I. Learning translation templates from examples. Information Systems, v. 23, n. 6, p. 353-363, 1998. https://doi.org/10.1016/S0306-4379(98)00017-9

HUTCHINS, W. J. Machine translation: A concise history. In: WAI, C. S. (Ed.) Computer Aided Translation: Theory and Practice. Hong Kong: Chinese University of Hong Kong, 2007. https://doi.org/10.1007/s10590-006-9003-9

JEAN, S.; CHO, K.; MEMISEVIC, R.; BENGIO, Y. On using very large vocabulary for neural machine translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 53., Beijing, 2015. Proceedings…, Beijing: ACL, 2015, p. 1-10. https://doi.org/10.3115/v1/P15-1001

KALCHBRENNER, N.; BLUNSOM, P. Recurrent continuous translation models. In: CONFERENCE OF EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, Washington, 2013. Proceedings…, Washington: EMNLP, 2013, p. 1700-1709.

KITAMURA, M. Translation knowledge acquisition for pattern-based machine translation. 2004, 114 f. Thesis (Doctorate) – Department of Information Processing, Graduate School of Information Science, Nara Institute of Science and Technology, 2004.

KOEHN, P.; OCH, F. J.; MARCU, D. Statistical phrase-based translation. In: HUMAN LANGUAGE TECHNOLOGY CONFERENCE AND MEETING OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 3., Edmonton, 2003. Proceedings…, Edmonton: HLT-NAACL, 2003, p. 127-133. https://doi.org/10.3115/1073445.1073462

KOEHN, P.; HOANG, H.; BIRCH, A.; CALLISON-BURCH, C.; FEDERICO, M.; BERTOLDI, N.; COWAN, B.; SHEN, W.; MORAN, C.; ZENS, R.; DYER, C.; BOJAR, O.; CONSTANTIN, A.; HERBST, E. Moses: Open Source Toolkit for Statistical Machine Translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 45., 2007, Prague. Proceedings…, Prague: ACL, 2007, p. 177-180.

LOPEZ, A. Statistical Machine Translation. ACM Computing Surveys, New York, v. 40, n. 3, p. 1-49, 2008. https://doi.org/10.1145/1380584.1380586

LUONG, M.; SUTSKEVER, I.; LE, V. Q.; VINYALS, O.; ZAREMBA, W. Addressing the rare word problem in neural machine translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 53., 2015, Lisbon. Proceedings…, Lisbon: ACL, 2015a, p. 11-19.

LUONG, M.; PHAM, H.; MANNING, C. D. Effective approaches to attention-based neural machine translation. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 53., 2015, Lisbon. Proceedings…, Lisbon: ACL, 2015b, p. 1412-1421. https://doi.org/10.18653/v1/D15-1166

LUONG, M.; MANNING, C. D. Achieving open vocabulary neural machine translation with hybrid word-character models. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 54., 2016, Berlin. Proceedings…, Berlin: ACL, 2016, p. 1054-1063. https://doi.org/10.18653/v1/P16-1100

LUONG, T.; CHO, K.; MANNING, C. Neural Machine Translation. Disponível em: http://nlp.stanford.edu/projects/nmt/Luong-Cho-Manning-NMT-ACL2016-v4.pdf. Acesso em: 17 out. 2016.

OCH, F. J.; NEY, H. The Alignment Template Approach to Statistical Machine Translation. Computational Linguistics, London, v. 30, n. 4, p. 417-449, 2004. https://doi.org/10.1162/0891201042544884

SENNRICH, R.; HADDOW, B.; BIRCH, A. Improving neural machine translation models with monolingual data. In: ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTACIONAL LINGUISTICS, 54., 2016, Berlin. Proceedings…, Berlin: ACL, 2016, p. 86-96. https://doi.org/10.18653/v1/P16-1009

SUTSKEVER, I.; VINYALS, O.; LE, Q. V. Sequence to sequence learning with neural networds. In: INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS, 27., Montréal, 2014. Proceedings…, Montréal: NIPS, 2014, p. 3104-3112.

Published

2017-12-21

How to Cite

CASELI, H. de M. Machine Translation: approaches and limitations. Domínios de Lingu@gem, Uberlândia, v. 11, n. 5, p. 1782–1796, 2017. DOI: 10.14393/DL32-v11n5a2017-21. Disponível em: https://seer.ufu.br/index.php/dominiosdelinguagem/article/view/37389. Acesso em: 27 nov. 2024.