ITACaRT: An Equal-Area Parallelogram Discrete Global Grid System for Terrestrial Cadastral Mapping—Designed for Usability and Blockchain Integration
Conteúdo do artigo principal
Resumo
Typically, the modernization of Land Administration Systems (LAS) concentrates on overarching aspects and seldom investigates the spatial infrastructure that underpins it, thereby presenting challenges for the integration of geospatial data. For this purpose, Discrete Global Grid Systems (DGGS), characterized by its "congruent cartography", offer a promising solution within a multi-scale reference framework. Moreover, a significant gap exists in the absence of a DGGS designed to address the cartographic focus and usability requirements for land administration, such as equal-area sizing and geodetic precision. Developed at the Aeronautics Institute of Technology (ITA), the ITA Cadastral Ellipsoidal Reference Tessellation (ITACaRT) was introduced as an innovative DGGS to bridge this gap. The development of ITACaRT was guided by several key criteria, including its suitability for cadastral purposes at appropriate scales, compatibility with the WGS84 ellipsoid and Global Navigation Satellite Systems (GNSS), utilization of simple parallelogram-shaped equal-area cells, a direct tessellation adhering to Cartesian geometry for usability by geoinformation professionals, and decimal convergence to facilitate blockchain tokenization. Complementary to these criteria, a Compositional Hierarchical Indexing system was devised to represent cadastral vector features more efficiently than the atomic identifiers typical of conventional DGGS. ITACaRT thus establishes a solid foundation for contemporary LAS, providing a viable spatial infrastructure that supports emerging technologies such as blockchain.
Downloads
Detalhes do artigo
Seção

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Como Citar
Referências
Benahmed Daho, A. (2020). CRYPTO-SPATIAL: An open standards smart contracts library for building geospatially enabled decentralized applications on the Ethereum blockchain. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B4-2020, 421–426. https://doi.org/10.5194/isprs-archives-xliii-b4-2020-421-2020
Bondaruk, B., Roberts, S. A., & Robertson, C. (2020). Assessing the state of the art in Discrete Global Grid Systems: OGC criteria and present functionality. Geomatica, 74(1), 9–30. https: //doi.org/10.1139/geomat-2019-0015
Cheng, C., Tong, X., Chen, B., & Zhai, W. (2016). A subdivision method to unify the existing latitude and longitude grids. ISPRS International Journal of Geo-Information, 5(9), 161. https://doi.org/10.3390/ijgi5090161
Cooper, A. K., van Huyssteen, E., Das, S., Coetzee, M., & Mans, G. (2014). Assessment of spatial data infrastructures. Town and Regional Planning, 64, 65–75.
Dawidowicz, A., & Źróbek, R. (2017). Land administration system for sustainable development: Case study of Poland. Real Estate Management and Valuation, 25(1), 112–122. https://doi.org/10.1515/remav-2017-0008
Gibb, R. (2016). The rHEALPix Discrete Global Grid System. IOP Conference Series: Earth and Environmental Science, 34, 012012. https://doi.org/10.1088/1755-1315/34/1/012012
Gibb, R. (2021). Topic 21 - Discrete Global Grid Systems - Part 1 Core Reference system and Operations and Equal Area Earth Reference System (OGC Discussion Paper No. 20-040r3). Open Geospatial Consortium. https://doi.org/10.62973/20-040r3
Goodchild, M. F. (2018). Reimagining the history of GIS. Annals of GIS, 24(1), 1–8. https://doi.org/10.1080/19475683.2018.1424737
Goodchild, M. F., Guo, H., Annoni, A., Bian, L., Bie, K., Campbell, F., Craglia, M., Ehlers, M., van Genderen, J., Jackson, D., Lewis, A., Pesaresi, M., Remetey-Fülöpp, G., Simpson, R., Skidmore, A., Wang, C., & Woodgate, P. (2012). Next-eneration Digital Earth. Proceedings of the National Academy of Sciences of the United States of America, 109, 11088–11094.
https://doi.org/10.1073/pnas.1202383109
Hobona, G.,&De Lathouwer, B. (2018). Geospatial standardization of Distributed Ledger Technologies (OGC Discussion Paper No. OGC 18-041r1). Open Geospatial Consortium. http://www.opengis.net/doc/DP/dlt-blockchain-review
Hojati, M., Robertson, C., Roberts, S., & Chaudhuri, C. (2022). GIScience research challenges for realizing discrete global grid systems as a Digital Earth. Big Earth Data, 6(3), 358–379. https://doi.org/10.1080/20964471.2021.2012912
Jenny, B., Jenny, H., & Räber, S. (2008). Map design for the Internet. In W. Cartwright, G. Gartner, L. Meng, & M. P. Peterson (Eds.), International perspectives on maps and the Internet (pp. 31–48). Springer. https://doi.org/10.1007/978-3-540-72029-4_3
Kan, B., Zhu, W., Liu, G., Chen, X., Shi, D., & Yu, W. (2017). Topology modeling and analysis of a power grid network using a graph database. International Journal of Computational Intelligence Systems, 10(1), 1355–1363. https://doi.org/10.2991/ijcis.10.1.96
Kimerling, A. J., Sahr, K., White, D., & Song, L. (1999). Comparing geometrical properties of global grids. Cartography and Geographic Information Science, 26(4), 271–288. https://doi.org/10.1559/152304099782294186
Li, M., & Stefanakis, E. (2020). Geospatial operations of Discrete Global Grid Systems—a comparison with traditional GIS. Journal of Geovisualization and Spatial Analysis, 4(2). https://doi.org/10.1007/s41651-020-00066-3
Ma, T., Zhou, C., Xie, Y., Qin, B., & Ou, Y. (2009). A discrete square global grid system based on the parallels plane projection. International Journal of Geographical Information Science, 23(10), 1297–1313. https://doi.org/10.1080/13658810802344150
Mahdavi-Amiri, A., Alderson, T., & Samavati, F. (2015). A survey of Digital Earth. Computers & Graphics, 53, 95–117. https://doi.org/10.1016/j.cag.2015.08.005
Peterson, P. R., Percivall, G., Purss, M. B. J., Samavati, F., & Gibb, R. (2015). Discrete Global Grid Systems - A Framework for the next Era in Big Earth Data. AGU Fall Meeting Abstracts, 2015, IN43B–1729.
Rajabifard, A. (Ed.). (2019). Sustainable Development Goals connectivity dilemma: Land and geospatial information for urban and rural resilience. CRC Press. https://doi.org/10.1201/9780429290626
Sahr, K., White, D., & Kimerling, A. J. (2003). Geodesic Discrete Global Grid Systems. Cartography and Geographic Information Science, 30(2), 121–134. https://doi.org /10.1559/152304003100011090
Silva, I. N., Shiguemori, E. H., & Dietzsch, G. (2025). Designing a parallelogram Discrete Global Grid System for terrestrial cadastral mapping. Proceedings of the Brazilian Symposium on GeoInformatics.
Snyder, J. P. (1987). Map Projections: A working manual. United States Government Printing Office.
Tobler, W. (1987). Measuring spatial resolution. Proceedings, Land Resources Information Systems Conference, 1, 12–16.
Tong, X. C., Ben, J., Liu, Y. Y., & Zhang, Y. S. (2013). Modeling and expression of vector data in the hexagonal Discrete Global Grid System. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-4/W2, 15–25. https://doi.org/10.5194/isprsarchives-XL-4-W2-15-2013
White, D., Kimerling, A. J., Sahr, K., & Song, L. (1998). Comparing area and shape distortion on polyhedral-based recursive partitions of the sphere. International Journal of Geographical Information Science, 12(8), 805–827. https://doi.org/10.1080/136588198241518
Williamson, I. P., & Enemark, S. (1996). Understanding cadastral maps. Australian Surveyor, 41(1), 38–52. https://doi.org/10.1080/00050336.1996.10558593
Williamson, I. P., Enemark, S., Wallace, J., & Rajabifard, A. (Eds.). (2010). Land administration for sustainable development. Esri Press.
Yomralioglu, T., & McLaughlin, J. (Eds.). (2017). Cadastre: Geo-information innovations in land administration. Springer. https://doi.org/10.1007/978-3-319-51216-7
Zhou, C., Ma, T., Yang, L., & Qin, B. (2007). Parallels plane projection and its geometric features. Science in China Series D: Earth Sciences, 50(S1), 176–180. https://doi.org/10.1007/s11430-007-5011-8