Estimation and analysis of horizontal acceleration in time series of GNSS positioning in CORS stations

Main Article Content

Eliel Jesse Morais de Jesus Junior
https://orcid.org/0009-0006-7582-4540
Ivandro Klein
https://orcid.org/0000-0003-4296-592X
Renan Toledo Costa
https://orcid.org/0009-0000-6556-3208
Christian Gonzalo Amagua Pilapanta
https://orcid.org/0000-0003-1155-7173
Paulo Sergio Oliveira Junior
https://orcid.org/0000-0001-7000-6924

Abstract

Coordinate time series of CORS (Continuous Operating Reference Stations) of GNSS (Global Navigation Satellite System) are used for various purposes, such as estimating velocity models, applied in the temporal update of coordinates for a reference epoch. However, horizontal displacement may not be described by a linear model with constant velocity. We propose including horizontal acceleration in the modeling of coordinate series from continuously monitoring GNSS stations. We analyzed the horizontal component series (East and North) of stations in Brazil (BRAZ, BELE, UFPR), Chile (CLL1, QLAP), and Japan (MIZU) with linear modeling (first-degree polynomial) and non-linear modeling (second-degree polynomial). For comparison of the models, updates were made for a reference epoch. Including acceleration improves results for stations in Chile (132 mm absolute, 83% relative) and Japan (556 mm absolute, 82% relative), near tectonic plate boundaries. Even for stations in Brazil, including acceleration can significantly improve (≈10 mm absolute, ≈92% relative) the temporal update of coordinates. We recommend non-linear modeling in the next realization of the Brazilian Geodetic System, following recent ITRF (International Terrestrial Reference Frame) realizations. This conclusion also applies to the long-term monitoring of large structures.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
JESUS JUNIOR, E. J. M. de; KLEIN, I.; COSTA, R. T.; PILAPANTA, C. G. A.; OLIVEIRA JUNIOR, P. S. Estimation and analysis of horizontal acceleration in time series of GNSS positioning in CORS stations. Brazilian Journal of Cartography, [S. l.], v. 76, 2024. DOI: 10.14393/rbcv76n0a-71296. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/71296. Acesso em: 19 oct. 2024.
Section
Geodesy

References

ALTAMIMI, Z., REBISCHUNG, P., MÉTIVIER, L., & COLLILIEUX, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, v. 121, n. 8, p. 6109–6131, 2016.

ALTAMIMI, Z.; REBISCHUNG, P.; COLLILIEUX, X.; MÉTIVIER, L.; CHANARD, K. ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions. Journal of Geodesy, v. 97, n. 5, p. 47, 2023.

ALVES, S. M. C.; SANTOS, M. C.; GEMAEL, C. A velocity field estimation of the Brazilian portion of the SOAM plate. GPS solutions, v. 7, p. 186-193, 2003.

AMAGUA, C. G. P.; EURIQUES, J. F.; ALVES, S. D. C.; KRUEGER, C. P. Analysis of local surface displacement using repeated GPS measurements: a case study of the Guabirotuba area, Curitiba, Brazil. Boletim de Ciências Geodésicas, v. 28, p. e2022005, 2022.

AMAGUA, C. G. P.; KRUEGER, C. P.; CRIOLLO, A. R. T. Modelo Estocástico das Series de Coordenadas GPS da Rede Brasileira de Monitoramento Continuo. Boletim de Ciências Geodésicas, v. 24, p. 545-563, 2018.

BAARDA, W. A testing procedure for use in geodetic networks. Pub. on Geod., New Series, v. 2, n. 5, 1968.

BEVIS, M.; BROWN, A. Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, v. 88, n. 3, p. 283–311, 2014.

BLEWITT, G.; LAVALLÉE, D. Effect of annual signals on geodetic velocity. Journal of Geophysical Research: Solid Earth, v. 107, n. B7, p. ETG 9-1-ETG 9-11, 2002.

BLEWITT, G.; HAMMOND, W.; KREEMER, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos, v. 99, 2018.

BLEWITT, G.; KREEMER, C.; HAMMOND, W. C.; GAZEAUX, J. MIDAS robust trend estimator for accurate GPS station velocities without step detection. Journal of Geophysical Research: Solid Earth, v. 121, n. 3, p. 2054-2068, 2016.

BOGUSZ, J.; KLOS, A. On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS solutions, v. 20, p. 655-664, 2016.

BOS, M. S. Hector user manual version 2.1. 2022. Disponível em <https://teromovigo.com/hector/>. Acesso em: jun. 2023.

BOS, M. S.; FERNANDES, R. M. S.; WILLIAMS, S. D. P.; BASTOS, L. Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, v. 87, n. 4, p. 351–360, 2013.

BRASSAROTE, G. DE O. N. Modelagem funcional e estocástica de séries temporais para a atualização e estimativa da componente altimétrica: aplicação no Sistema Geodésico Brasileiro. Tese - Presidente Prudente: UNESP, 2020.

DE FREITAS, K. X. S.; DAL POZ, W. R.; NASCIMENTO, L. A. Potencial da Utilização de Multivelocidade no Processo de Atualização Temporal de Coordenadas no PPP. Revista Brasileira de Cartografia, v. 74, n. 3, 2022.

DREWES, H.; HEIDBACH, O. The 2009 horizontal velocity field for South America and the Caribbean. Geodesy for Planet Earth, Heidelberg, BL, v. 136, p. 657-664, 2012. DOI: 10.1007/978-3-642-20338-1_81.

DREWES, H; SÁNCHEZ, L. Velocity model for SIRGAS 2017: VEMOS2017, Technische Universitaet Muenchen, Deutsches Geodaetisches Forschungsinstitut (DGFI-TUM), IGS RNAAC SIRGAS. 2020.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). IBGE-PPP: Serviço on-line para Pós-Processamento de dados GNSS: manual do usuário. Versão maio de 2020. Disponível em: <https://biblioteca.ibge.gov.br/visualizacao/livros/liv101677.pdf>. Acesso em: jun. 2023.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Resolução R.PR 1/2005: Altera a caracterização do Sistema Geodésico Brasileiro. 2005.

JESUS JUNIOR, E. J. M., COSTA, R. R. T., KLEIN, I., & DE OLIVEIRA JR, P.S. Estimação da Aceleração de Estações GNSS Ativas. In: Anais XII Colóquio Brasileiro de Ciências Geodésicas / V Simpósio Brasileiro de Geomática, Curitiba, 2022.

JESUS JUNIOR, E. J. M. Estimação e análise da aceleração horizontal em estações GNSS de monitoramento contínuo, Dissertação (Mestrado em Ciências Geodésicas) Universidade Federal do Paraná, Curitiba, 2023.

LEHMANN, R.; LÖSLER, M. Multiple outlier detection: hypothesis tests versus model selection by information criteria. Journal of surveying engineering, v. 142, n. 4, p. 04016017, 2016.

MONICO, J. F. G. Posicionamento pelo GNSS, descrição, fundamentos e aplicações. 2o ed. São Paulo, SP: Editora UNESP, 2008.

MONTILLET, J. P.; BOS, M. S. (Eds.). Geodetic Time Series Analysis in Earth Sciences. Cham: Springer International Publishing, 2020.

MOREL, L.; MOUDNI, O.; DURAND, F.; NICOLAS, J.; FOLLIN, J. M.; POTTIAUX, E.; VAN BAELEN, J. On the relation between GPS tropospheric gradients and the local topography. Advances in Space Research, v. 68, n. 6, p. 2539-2552, 2021. DOI: 10.1016/j.asr.2021.06.010

SELLA, G. F.; DIXON, T. H.; MAO, A. REVEL: A model for recent plate velocities from space geodesy. Journal of Geophysical Research: Solid Earth, v. 107, n. B4, p. ETG 11-1-ETG 11-30, 2002

Most read articles by the same author(s)