CLASSIFICADOR ADAPTATIVO PARA O RECONHECIMENTO DE ALVOS EM IMAGENS CCD/CBERS
Conteúdo do artigo principal
Resumo
Este trabalho apresenta um classificador neural integrado que visa aumentar a acurácia no reconhecimento de diferentes feições em imagens do sensor CCD/CBERS. Entre essas feições encontram-se capões nativos e áreas de reflorestamento de Araucaria angustifolia localizados dentro e aos arredores da Floresta Nacional de São Francisco de Paula. Essa FLONA é considerada a unidade de conservação mais antiga do estado do Rio Grande do Sul, Brasil. O classificador neural proposto é dito integrado pelo fato de ser constituído por três modelos de redes neurais agrupados através de duas abordagens distintas de integração: abordagem 2/3 e abordagem pelo critério da credibilidade. Os classificadores neurais utilizados foram: Perceptron de Múltiplas Camadas com Retropropagação de Erros, Quantização Vetorial por Aprendizagem e Rede de Função de Base Radial. Os experimentos desenvolvidos mostram que o modelo neural integrado, pelo critério de credibilidade, contribui para aumentar a acurácia na identificação de feições, mostrando-se promissor para outras aplicações, tais como o monitoramento em tempo real de alvos da superfície terrestre.
Downloads
Detalhes do artigo
Edição
Seção
Artigos

Esta obra está licenciado com uma Licença Creative Commons Attribution 3.0 Unported License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").
Como Citar
TODT, Viviane; SHIMABUKURO, Yosio Edemir; RUBERT, Cléber; DA SILVA, José Demísio Simões; FORMAGGIO, Antonio Roberto. CLASSIFICADOR ADAPTATIVO PARA O RECONHECIMENTO DE ALVOS EM IMAGENS CCD/CBERS. Revista Brasileira de Cartografia, [S. l.], v. 58, n. 3, 2009. DOI: 10.14393/rbcv58n3-44914. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/44914. Acesso em: 10 abr. 2025.