Topological aspects of continuity via generalized limit

Authors

DOI:

https://doi.org/10.14393/BEJOM-v2-n3-2021-55291

Keywords:

Limit, continuity, topological invariant

Abstract

This article aims to introduce the concept of generalized continuity of an function with respect to another function and to analyze the topological aspects of this concept Initially, the article presents the concept and the properties of generalized limit ofan function with respect to another function, highlighting that the Riemann integral is a particular case of generalized limit. Then, the definition of generalized continuity is presented, evidencing that this concept does not coincide with the classical continuity, being the last one a particular case of the first. Finally, some topological aspects associated with the concept of generalized continuity are approached in order to present proofs about the preservation of topological invariants via generalized continuity, such as preservation of compactness and connectedness.

Downloads

Download data is not yet available.

Author Biography

Marcelo Gonçalves Oliveira Vieira, Federal University of Uberlândia / Pontal Institute of Exact and Natural Sciences

Graduated in Mathematics from the Federal University of Uberlândia - UFU (2003), master's degree in Mathematics from the State University of Campinas - UNICAMP (2005) and doctorate in Mathematics from the State University of Campinas - UNICAMP (2009). Since March 2009, he has been a professor at the Federal University of Uberlândia (UFU), having been working at the Pontal Institute of Exact and Natural Sciences (ICENP) since 2018. He currently holds the position of Associate Professor II and has experience in the areas of Topology and Stochastic Systems, with an emphasis on the following themes: generalized continuity, monotonic homotopias and Young systems.

References

BOTELHO, G. M. A.; PELLEGRINO, D. M.; TEIXEIRA, E. V. Fundamentos de Análise Funcional, 2. ed. Rio de Janeiro: Ed. SBM, 2015.

BRAZ, J. H. S.; VIEIRA, M. G. O. Limites generalizados de funções, In: V SEMAP, n. 5, 2014. Anais da V SEMAP. Available in:http://www.semap.facip.ufu.br/node/30. Accessed on 11/19/2020.

COLONIUS, F.; KIZIL E.; SAN MARTIN L. A. B. Covering space for monotonichomotopy of trajectories of control system. J. Differential Equations, v. 216, n. 2, p. 324-353, 2005.

KÜHLKAMP, N. Introdução à Topologia Geral, 2. ed. Florianópolis: Ed. daUFSC, 2002.

KUPKA, I. On similarity of functions, Top. Proc., v. 36, p. 173-187, 2010.

KUPKA, I. Similar functions and their properties, Tatra Mt. Math. Publ., v. 55, p.47-56, 2013.

KUPKA, I. Measurability of similar functions, Ann. Acad. Sci. Fenn. Math. Diss.,v. 42, p. 803-808, 2017.

KUPKA, I. Generalized derivative and generalized continuity, Tatra Mt. Math. Publ., v. 74, p. 77-84, 2019.

MUNKRES, J. R.Topology, 2. ed. London: Pearson, 2013.

VIEIRA, M. G. O.; KIZIL, E; CATUOGNO, P. J. Monotonic homotopy for trajectories of Young systems. J. Dyn. Control Syst., v. 19, n. 3, p. 405-420, 2013.

VIEIRA, M. G. O.; KIZIL, E; CATUOGNO, P. J. Regular trajectories of Youngsystems. J. Dyn. Control Syst., v. 21, n. 1, p. 1-21, 2015.

VIEIRA, M. G. O. Continuidade no contexto de limites generalizados, In: VII SEMAP, n. 7, 2016. Anais da VII SEMAP. Available in: http://www.semap.facip.ufu.br/node/69. Accessed on 11/19/2020.

WILLARD, S.General Topology, Reading, Massachusetts: Addison-Wesley Publishing Company, 1970.

Downloads

Published

2020-12-22

How to Cite

VIEIRA, M. G. O. Topological aspects of continuity via generalized limit. BRAZILIAN ELECTRONIC JOURNAL OF MATHEMATICS, Uberlândia, v. 2, n. 3, p. 70–107, 2020. DOI: 10.14393/BEJOM-v2-n3-2021-55291. Disponível em: https://seer.ufu.br/index.php/BEJOM/article/view/55291. Acesso em: 23 nov. 2024.

Most read articles by the same author(s)