Object-based Classification of Vegetation Cover Typologies in Wetland, Integrating Optical Images and SAR

Main Article Content

Tassia Fraga Belloli
https://orcid.org/0000-0001-6365-7796
Laurindo Antonio Guasselli
https://orcid.org/0000-0001-8300-846X
Tatiana Kuplich
https://orcid.org/0000-0003-0657-4024
Luis Fernando Chimelo Ruiz
https://orcid.org/0000-0003-3800-6902
João Paulo Delapasse Simioni
https://orcid.org/0000-0001-7426-4584

Abstract

Accurately mapping the boundaries of wetlands and patterns of vegetation cover is an essential step for rapid assessment and management of wetlands. The Object-Based Image Analysis (OBIA) as from machine learning and fusion of optical and radar data has advantages over other techniques for mapping vegetation cover in wetlands ecosystems. This study aims to classify vegetation cover typologies in wetlands, integrating optical and SAR images from the Sentinel-1 and 2A satellites and the Random Forest algorithm in OBIA classification, using Banhado Grande, located in the Rio Grande do Sul as a case study. As a result, the VH and VV polarizations of Sentinel-1 obtained the highest relevance in the classification (18.6%). Among the optical bands, the greatest relevance occurred for the Red Edge and Medium Infrared bands. From the optical attributes, the classification obtained an accuracy of 86.2%. When the most important SAR attributes were inserted, the accuracy increased to 91.3%. The Emergent Macrophyte (ME) class, corresponding to the species Scirpus giganteus, achieved the best accuracy of the classifier (91%), with an estimated area of 1,507 ha. We conclude that the integration of images combined with the classification method made it possible to delimit the extent of vegetation typologies and the total area of the ecosystem. Accurate results show that this methodological approach can be expanded to other subtropical palustrine wetlands.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
BELLOLI, T. F.; GUASSELLI, L. A.; KUPLICH, T.; RUIZ, L. F. C.; SIMIONI, J. P. D. Object-based Classification of Vegetation Cover Typologies in Wetland, Integrating Optical Images and SAR. Brazilian Journal of Cartography, [S. l.], v. 74, n. 1, p. 67–83, 2022. DOI: 10.14393/rbcv74n1-61277. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/61277. Acesso em: 21 nov. 2024.
Section
Original Articles
Author Biography

Tassia Fraga Belloli, Universidade Federal do Rio Grande do Sul

Geógrafa e Mestre em Sensoriamento Remoto pela Universidade Federal do Rio Grande do Sul (UFRGS). É bolsista de Doutorado da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e professora-tutora no curso de Graduação Licenciatura em Geografia EAD, da UFRGS Campus Litoral Norte. Íntegra o laboratório de Geoprocessamento e Análise Ambiental (LAGAM/UFRGS) onde desenvolve pesquisas na área de Sensoriamento Remoto em áreas úmidas, reconhecimento e mapeamento de suas funções ambientais. Suas áreas de interesse incluem identificação e mapeamento de áreas úmidas, estimativa de biomassa vegetal e armazenamento de carbono em áreas úmidas, impactos ambientais e recuperação ambiental de áreas úmidas e planícies inundáveis.

Most read articles by the same author(s)