Two aspects on L1-norm adjustment of leveling networks

Main Article Content

Stefano Sampaio Suraci
https://orcid.org/0000-0002-4453-9273
Leonardo Castro de Oliveira
https://orcid.org/0000-0001-5290-5029
Ivandro Klein
https://orcid.org/0000-0003-4296-592X

Abstract

L1-norm adjustment corresponds to the minimization of the sum of weighted absolute residuals. Unlike Least Squares, it is a robust estimator, i.e., insensitive to outliers. In geodetic networks, the main application of L1-norm refers to the identification of outliers. There is no general analytical expression for its solution. Linear programming is the usual strategy, but it demands decorrelated observations. In the context of Least Squares, it is well known that the application of Cholesky factorization decorrelates observations without changing the results of the adjustment. However, there is no mathematical proof that this is valid for L1-norm. Besides that, another aspect on L1-norm is that equal weights may guarantee maximum robustness in practice. Therefore, it is expected to also provide a better effectiveness in the identification of outliers. This work presents contributions on two aspects concerning L1-norm adjustment of leveling networks, being them: the validity of Cholesky factorization for decorrelation of observations and the effectiveness for identification of outliers of a stochastic model with equal weights for observations. Two experiments were conducted in leveling networks simulated by the Monte Carlo method. In the first one, results indicate that the application of the factorization as previously performed in the literature seems inappropriate and needs further investigation. In the second experiment, comparisons were made between L1 with equal weights and L1 with weights proportional to the inverse of the length of the leveling line. Results show that the first approach was more effective for the identification of outliers. Therefore, it is an interesting alternative for the stochastic model in L1-norm adjustment. Besides providing a better performance in the identification of outliers, the need for observation decorrelation becomes irrelevant if equal weights are adopted.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
SURACI, S. S.; OLIVEIRA, L. C. de; KLEIN, I. Two aspects on L1-norm adjustment of leveling networks. Brazilian Journal of Cartography, [S. l.], v. 71, n. 2, p. 486–500, 2019. DOI: 10.14393/rbcv71n2-47697. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/47697. Acesso em: 6 nov. 2024.
Section
Original Articles
Author Biographies

Stefano Sampaio Suraci, Seção de Engenharia Cartográfica. Instituto Militar de Engenharia(IME).

Engenheiro Cartógrafo pelo Instituto Militar de Engenharia - IME (2010), com especialização em Gestão da Qualidade da Informação Geográfica pela Universidade de Jaén (2013) e mestrado em Engenharia Cartográfica pelo IME (2018). Atualmente é professor do IME.

Leonardo Castro de Oliveira, Seção de Engenharia Cartográfica. Instituto Militar de Engenharia(IME)

Possui graduação em Engenharia Cartográfica pela Universidade do Estado do Rio de Janeiro (1983), mestrado em Ciências Geodésicas pela Universidade Federal do Paraná (1990) e doutorado em Engenharia de Transportes pela Universidade de São Paulo (1998). É professor do Instituto Militar de Engenharia.

Ivandro Klein, Instituto Federal de Santa Catarina

Mestre (2012) e Doutor (2014) em Sensoriamento Remoto e Engenheiro Cartógrafo (2009) pela Universidade Federal do Rio Grande do Sul (UFRGS). Atualmente é Professor DIII-1 do Instituto Federal de Santa Catarina (IFSC) e Membro Permanente externo no Programa de Pós-Graduação em Ciências Geodésicas da Universidade Federal do Paraná (UFPR).

Most read articles by the same author(s)

1 2 > >>