Técnica PSInSAR na Avaliação de Deslocamentos: Análise Conceitual, Aplicações e Perspectivas

Conteúdo do artigo principal

Sérgio da Conceição Alves
Cláudia Pereira Krueger
Regiane Dalazoana
https://orcid.org/0000-0001-5468-0679

Resumo

Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR™) é uma técnica de sensoriamento remoto que usa como base a técnica Differential InSAR (DInSAR), porém, emprega uma série de interferogramas diferenciais advindas de uma pilha de imagens Single Look Complex - Synthetic Aperture Radar (SLC-SAR) devidamente corregistradas e adquiridas em um intervalo de tempo sobre uma mesma área para, de tal modo, selecionar pixels que apresentam um índice de dispersão da amplitude dentro de um limiar estabelecido e, assim, gerar uma série histórica de deslocamento da superfície. A PSInSAR™ usa pixels que contenham dispersores persistentes que são caracterizados por obras de engenharia como pontes, taludes, telhados, casas, prédios, e algumas feições naturais como rochas. Por meio da análise da fase desses pixels, a PSInSAR™ consegue superar algumas dificuldades encontradas com a DInSAR, tais como, problemas correlacionados com a falta de correlação atmosférica, temporal e espacial. Desde a sua idealização no início dos anos de 2000 e devido a sua capacidade de mapear deslocamentos superficiais a uma acurácia milimétrica, a PSInSAR™ vem sendo amplamente usada em estudos sobre subsidências, deslizamentos, monitoramento de barragens, monitoramento de minas e de estruturas de engenharia no modo geral. Nesse sentido, o presente artigo descreve o princípio básico de funcionamento da técnica, investiga a sua aplicabilidade no âmbito nacional e internacional e apresenta os pacotes de processamento existentes no mercado assim como o acesso de dados interferométricos que possibilitam à utilização da PSInSAR™.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
ALVES, S. da C.; KRUEGER, C. P.; DALAZOANA, R. Técnica PSInSAR na Avaliação de Deslocamentos: Análise Conceitual, Aplicações e Perspectivas . Revista Brasileira de Cartografia, [S. l.], v. 75, 2023. DOI: 10.14393/rbcv75n0a-66102. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/66102. Acesso em: 21 nov. 2024.
Seção
Sensoriamento Remoto
Biografia do Autor

Sérgio da Conceição Alves, Universidade Federal do Paraná

Técnico em Agropecuária pelo Centro Federal de Educação Tecnológica do Rio Pomba (MG), atualmente denominado de Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais. Formado em Engenharia de Agrimensura e Cartográfica pela Universidade Federal Rural do Rio de Janeiro (UFRRJ), mestre em Ciências Geodésicas no Programa de Pós-Graduação em Ciências Geodésicas na Universidade Federal do Paraná. Atualmente faço doutorado no mesmo programa o qual obtive meu título de mestre.

Cláudia Pereira Krueger, Universidade Federal do Paraná

A pesquisadora possui graduação em Engenharia Civil pela Universidade Federal do Paraná (1988), mestrado em Ciências Geodésicas pela Universidade Federal do Paraná (1994) e doutorado em Ciências Geodésicas pela Universidade Federal do Paraná (1996). Sendo que este último foi cursado na modalidade sandwich entre a UFPR e o Institut für Erdmessung da Universidade de Hannover. Atualmente é professora titular da Universidade Federal do Paraná. É docente permanente dos Programas de Pós Graduação em Ciências Geodésicas (PPGCG/UFPR - mestrado e doutorado) e em Engenharia de Recursos Hídricos e Ambientais (PPGERH/UFPR mestrado e doutorado). Tem experiência na área de Geociências, com ênfase em Geodésia Espacial e Geodésia Marinha, atuando principalmente nos seguintes temas: GPS, DGPS, GNSS, levantamentos geodésicos em áreas costeiras, monitoramento das áreas costeiras, calibração de antenas GNSS, levantamentos hidrográficos. É membro do corpo editorial do Boletim de Ciências Geodésicas e da Revista Brasileira de Cartografia. Coordenadora de projetos de pesquisa financiados pela Fundação Araucária e pelo CNPq. Em 2009 recebeu o titulo de Hidrográfo Honorário pela Diretoria de Hidrografia e Navegação, da Marinha do Brasil. Foi Coordenadora da Iniciação Científica e Integração Acadêmica da PRPPG e do Programa de Pós-graduação em Ciências Geodésicas. Possui 11 capítulos de livros, 37 artigos em periódicos (nacionais e internacionais) e 151 artigos publicados em eventos nacionais e internacionais. Em termos da formação de recursos humanos, Claudia orientou 9 teses de doutorado, 16 dissertações de mestrado, co-orientou 1 tese de doutorado e 2 dissertações de mestrado, cerca de 32 trabalhos de especialização e de conclusão de curso de graduação e cerca de 30 trabalhos de iniciação científica e inovação tecnológica. Possui Bolsa Produtividade da Fundação Araucária. Membro do projeto ResMa, CAPES/PRINT.

Regiane Dalazoana, Universidade Federal do Paraná

Possui graduação em Engenharia Cartográfica pela Universidade Federal do Paraná (1999), mestrado em Ciências Geodésicas pela Universidade Federal do Paraná (2001) e doutorado em Ciências Geodésicas pela Universidade Federal do Paraná (2006). Atualmente é professor associado da Universidade Federal do Paraná. Tem experiência na área de Geociências, com ênfase em Geodésia, atuando principalmente nos seguintes temas: sistema geodésico de referência, redes geodésicas de referência e altimetria por satélites.

Referências

ACOSTA, G.; RODRÍGUEZ, A.; EUILLADES, P.; et al. Detection of active landslides by dinsar in Andean Precordillera of San Juan, Argentina. Journal of South American Earth Sciences, v. 108, n. January, p. 103205, 2021.

AGRAM, P. S.; JOLIVET, R.; RIEL, B.; et al. New radar interferometric time series analysis toolbox released. Eos, v. 94, n. 7, p. 69–70, 2013. DOI: 10.1002/2013EO070001.

ASLAN, G.; FOUMELIS, M.; RAUCOULES, D.; et al. Landslide mapping and monitoring using persistent scatterer interferometry (PSI) technique in the French alps. Remote Sensing, v. 12, n. 8, 2020.

BEKAERT, D. P. S.; WALTERS, R. J.; WRIGHT, T. J.; HOOPER, A. J.; PARKER, D. J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, v. 170, p. 40–47, 2015. Elsevier B.V. DOI: 10.1016/j.rse.2015.08.035.

BERARDINO, P.; FORNARO, G.; LANARI, R.; SANSOSTI, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, v. 40, n. 11, p. 2375–2383, 2002.

BLASCO, J. M. D.; FOUMELIS, M.; STEWART, C.; HOOPER, A. Measuring urban subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sensing, v. 11, n. 2, 2019.

BOHANE, A. M.; OLIVEIRA, W. J. DE; PEDROSO, E. C.; et al. A utilização da tecnologia InSAR na caracterização da deformação superficial do terreno no campo petrolífero de Canto do Amaro-RN. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, 2015.

BOVENGA, F.; WASOWSKI, J.; NITTI, D. O.; NUTRICATO, R.; CHIARADIA, M. T. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sensing of Environment, v. 119, p. 272–285, 2012. Elsevier Inc. DOI: 10.1016/j.rse.2011.12.013.

BUDETTA, P.; NAPPI, M.; SANTORO, S.; SCALESE, G. DinSAR monitoring of the landslide activity affecting a stretch of motorway in the Campania region of Southern Italy. Transportation Research Procedia, v. 45, n. 2019, p. 285–292, 2020. Elsevier B.V. DOI: 10.1016/j.trpro.2020.03.018.

CANO, E. C.; MOLINA, O. D.; GRANADOS, H. D. Subsidencia y sus mapas de peligro : Un ejemplo en el área nororiental de la Zona Metropolitana de la Ciudad de México. Boletín de la Sociedad Geológica Mexicana, v. 63, n. 1, p. 53–60, 2011.

CHEN, C. W.; ZEBKER, H. A. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms: erratum. Journal of the Optical Society of America A, v. 18, n. 5, p. 1192, 2000.

CHEN, C. W.; ZEBKER, H. A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America A, v. 18, n. 2, p. 338, 2001.

CHEN, C. W.; ZEBKER, H. A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, v. 40, n. 8, p. 1709–1719, 2002.

CHENDEB EL RAI, M.; SIMONETTO, E. PS-InSAR experiments for the analysis of urban ground deformation using StaMPS. Image and Signal Processing for Remote Sensing XV, v. 7477, n. September 2009, p. 74771J, 2009.

CIAN, F.; BLASCO, J.; CARRERA, L. Sentinel-1 for Monitoring Land Subsidence of Coastal Cities in Africa Using PSInSAR: A Methodology Based on the Integration of SNAP and StaMPS. Geosciences, v. 9, n. 3, p. 124, 2019.

COLESANTI, C.; FERRETTI, A.; PRATI, C.; ROCCA, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Engineering Geology, v. 68, n. 1–2, p. 3–14, 2003.

CROSETTO, M.; CRIPPA, B. State of the art of land deformation monitoring using differential SAR interferometry. ISPRS Hannover …, 2005.

CROSETTO, M.; DEVANTHÉRY, N.; CUEVAS-GONZÁLEZ, M.; MONSERRAT, O.; CRIPPA, B. Exploitation of the full potential of PSI data for subsidence monitoring. Proceedings of the International Association of Hydrological Sciences, v. 372, p. 311–314, 2015.

CROSETTO, M.; MONSERRAT, O.; CUEVAS-GONZÁLEZ, M.; DEVANTHÉRY, N.; CRIPPA, B. Persistent Scatterer Interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, v. 115, p. 78–89, 2016. International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). DOI: 10.1016/j.isprsjprs.2015.10.011.

CUEVAS-GONZÁLEZ, M.; CROSETTO, M.; MONSERRAT, O.; CRIPPA, B. Sentinel-1A/B imagery for terrain deformation monitoring: A strategy for Atmospheric Phase Screening (APS) estimation. Procedia Computer Science, v. 138, p. 388–392, 2018. Elsevier B.V.

CURLANDER, J. C.; MCDONOUGH, R. N. Synthetic aperture Radar Systems and Signal Processing. New York, 1991.

DU, Z. Mapping Earth Surface Deformation using New Time Series Satellite Radar Interferometry, 2017. 226 p. Thesis (Doctor of Philosophy)- University of New South Wales, Sydney, Australia.

DUMKA, R. K.; SURIBABU, D.; NARAIN, P.; et al. PSInSAR and GNSS derived deformation study in the west part of Narmada Son Lineament (NSL), western India. Quaternary Science Advances, v. 4, n. June, p. 100035, 2021. Elsevier Ltd. DOI: 10.1016/j.qsa.2021.100035.

ESA. Sentinel Application Platform - SNAP. Disponível em: <https://step.esa.int/main/toolboxes/snap/>. Acesso em: 19 jul. 2019.

EVERS, M.; KYRIOU, A.; SCHULZ, K.; NIKOLAKOPOULOS, K. G. A study on recent ground deformation near Patras, Greece. In: K. Schulz; K. G. Nikolakopoulos; U. Michel (Orgs.); Earth Resources and Environmental Remote Sensing/GIS Applications X. Anais... . p.20, 2019.

FARINA, P.; COLOMBO, D.; FUMAGALLI, A.; MARKS, F.; MORETTI, S. Permanent Scatterers for Landslide Investigations: outcomes from the ESA-SLAM project. Engineering Geology, v. 88, n. 3–4, p. 200–217, 2006.

FERRETTI, A.; FUMAGALLI, A.; NOVALI, F.; et al. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, v. 49, n. 9, p. 3460–3470, 2011.

FERRETTI, A.; MONTI-GUARNIERI, A.; PRATI, C.; ROCCA, F. InSAR Principles : Guidelines for SAR Interferometry Processing and Interpretation. The Netherlands: ESA Publications, 2007.

FERRETTI, A.; PRATI, C.; ROCCA, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, v. 38, n. 5 I, p. 2202–2212, 2000.

FERRETTI, A.; PRATI, C.; ROCCA, F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, v. 39, n. 1, p. 8–20, 2001.

FERRO-FAMIL, L.; POTTIER, E. Synthetic Aperture Radar Imaging. Microwave Remote Sensing of Land Surfaces: Techniques and Methods, p. 1–65, 2016.

FLORES-ANDERSON, A. I.; HERNDON, K. E.; THAPA, R. B.; CHERRINGTON, E. The SAR Handbook. NASA, 2019.

GABRIEL, A. K.; GOLDSTEIN, R. M.; ZEBKER, H. A. Mapping small elevation changes over large areas: differential radar interferometry. Journal of Geophysical Research, v. 94, n. B7, p. 9183–9191, 1989.

GAMA, F. F.; PARADELLA, W. R.; MURA, J. C.; DE OLIVEIRA, C. G. Advanced DINSAR analysis on dam stability monitoring: A case study in the Germano mining complex (Mariana, Brazil) with SBAS and PSI techniques. Remote Sensing Applications: Society and Environment, v. 16, 2019.

GAMBA, C. T. DE C.; ROSA, R. A. DA S.; NOGUEIRA JUNIOR, J. B. Identificação de processos erosivos às margens do rio Madeira (RO/AM) a partir da interferometria diferencial por radar (DINSAR). Os Desafios da Geografia Física na Fronteira do Conhecimento. p.4750–4762, 2017. Campinas: INSTITUTO DE GEOCIÊNCIAS - UNICAMP.

GEOMATICA. Geomatica Training Guide: SAR Processening with Geomatica. 2.3 ed. Canada, 2015.

GRAHAM, L. C. Synthetic Interferometer Radar For Topographic Mapping. Proceedings of the IEEE, v. 62, n. 6, p. 763–768, 1974.

GUERRA, J. B.; CECARELLI, I. C. F.; LOMONACO, B. F. Análise da viabilidade do uso das técnicas DInSAR e PSInSAR com dados TerraSAR X para monitorar movimentos da superfície na região da UHE Salto Pilão-SC. Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2011.

HANSSEN, R. F. Radar Interferometry, Data Interpretation and Error Analysis. 2o ed. Dordrecht: Kluwer Academic Publishers, 2001.

HARTWIG, M. E. Monitoramento De Taludes De Mineração Por Interferometria Diferencial com Dados Terrasar-X Na Amazônia: Mina De N4W, Serra De Carajás, Pará, Brasil. 270 f. Tese (Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, São Paulo, 2014.

HERRING, T. A.; KING, R. W.; FLOYD, M. A.; MCCLUSKY, S. C.; SCIENCES, P. GAMIT - Reference Manual. 2018. Disponível em: < http://geoweb.mit.edu/gg/docs.php>. Acesso em: 19 out. 2022.

HEXAGON. Imagine SAR Interferometry. 2019. Disponível em: < https://bynder.hexagon.com/m/5464f5882d827b32/original/Hexagon_GSP_IMAGINE_SAR_Interferometry_Product_Sheet.pdf >. Acesso em: 19 out. 2022.

HILLEY, G. E.; BÜRGMANN, R.; FERRETTI, A.; NOVALI, F.; ROCCA, F. Dynamics of Slow-moving Landslides from Permanent Scatterer Analysis. Science, v. 304, n. 5679, p. 1952–1955, 2004.

HOESER, T. StaMPS_Visualizer. , 2020. Zenodo. Disponível em: <https://doi.org/10.5281/zenodo.4407188>.Acesso em: 21 out. 2021.

HOOPER, A. J. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, v. 35, n. 16, p. 1–5, 2008.

HOOPER, A.; SEGALL, P.; ZEBKER, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, v. 112, n. 7, p. 1–21, 2007.

HOOPER, A.; SPAANS, K.; BEKAERT, D.; CUENCA, M. C.; ARIKAN, M. StaMPS / MTI Manual. , p. 44, 2018. Disponível em: < https://homepages.see.leeds.ac.uk/~earahoo/stamps/StaMPS_Manual_v4.1b1.pdf>. Acesso em: 19 out. 2022.

HOOPER, A.; ZEBKER, H. A. Phase unwrapping in three dimensions with application to InSAR time series. Journal of the Optical Society of America A, v. 24, n. 9, p. 2737, 2007.

HOOPER, A.; ZEBKER, H.; SEGALL, P.; KAMPES, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, v. 31, n. 23, p. 1–5, 2004.

INFANTE, D.; DI MARTIRE, D.; CONFUORTO, P.; et al. Assessment of building behavior in slow-moving landslide-affected areas through DInSAR data and structural analysis. Engineering Structures, v. 199, n. February, p. 109638, 2019. Elsevier. DOI: 10.1016/j.engstruct.2019.109638.

JIANG, L.; ZHAO, Q.; CHENG, S.; LIN, H. Integrated analysis of PSInSAR and geological data for investigating local differential settlement of new Hong Kong International Airport. International Conference on Earth Observation Data Processing and Analysis (ICEODPA), v. 7285, n. December 2008, p. 72854D, 2008.

KAMPES, B. Delft object-oriented radar interferometric software: Users manual and technical documentation. Delft University of Technology, Delft, 1999.

KAMPES, B.; USAI, S. Doris: the Delft Object−oriented Radar Interferometric Software. 2nd International Symposium on Operationalization of Remote Sensing, 1999.

KOTHYARI, G. C.; JOSHI, N.; TALOOR, A. K.; et al. Reconstruction of active surface deformation in the Rishi Ganga basin, Central Himalaya using PSInSAR: A feedback towards understanding the 7th February 2021 Flash Flood. Advances in Space Research, , n. February, 2021. COSPAR. DOI: 10.1016/j.asr.2021.07.002.

L3HARRIES. ENVI ® SARSCAPE ® Process, analyze and solve problems with SAR data. Broomfield, 2021. Disponível em: < https://www.l3harrisgeospatial.com/Software-Technology/ENVI-SARscape >. Acesso em: 19 out. 2022.

LAKHOTE, A.; THAKKAR, M. G.; KANDREGULA, R. S.; et al. Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quaternary International, , n. July, 2020. Elsevier Ltd. DOI: 10.1016/j.quaint.2020.07.010.

LASSWELL, S. W. History of SAR at Lockheed Martin (previously Goodyear Aerospace). In: R. N. Trebits; J. L. Kurtz (Orgs.); Radar Sensor Technology IX. Anais... . v. 5788, p.1–12, 2005.

LEIJEN, F. VAN. Persistent Scatterer Interferometry based on geodetic estimation theory. 220 p. Tese (Geodesie en Geoinformatica). Delft University of Technology, Nederlands, 2014.

LI, Z.; BETHEL, J. Image coregistration in SAR interferometry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 37, p. 433–438, 2008.

LIU, G.; LUO, X.; CHEN, Q.; HUANG, D.; DING, X. Detecting land subsidence in Shanghai by PS-networking SAR interferometry. Sensors, v. 8, n. 8, p. 4725–4741, 2008.

LONG, N. Q.; VAN ANH, T.; KHAC LUYEN, B. Determination of Ground Subsidence by Sentinel-1 SAR Data (2018-2020) over Binh Duong Quarries, Vietnam. VNU Journal of Science: Earth and Environmental Sciences, v. 37, n. 2, p. 69–83, 2021.

MAHMUD, M. U.; YAKUBU, T. A.; OLUWAFEMI, O.; et al. Application of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) technique to Land Deformation Monitoring in Warri Metropolis, Delta State, Nigeria. Procedia Computer Science, v. 100, p. 1220–1227, 2016.

MASSONNET, D.; ADRAGNA, F. Description of DIAPASON software developped by CNES current and future applications. Workshop on ERS SAR Interferometry, 1997.

MASSONNET, D.; FEIGL, K.; ROSSI, M.; ADRAGNA, F. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, v. 369, n. 6477, p. 227–230, 1994.

MINTPY. MintPy. Disponível em: <https://github.com/insarlab/MintPy>. Acesso em: 19/7/2021.

MORA, O.; ORDOQUI, P.; ROMERO, L. Generation of classical dinsar and PSI ground motion maps on a cloud thematic platform. European Space Agency, (Special Publication) ESA SP, v. SP-740, n. 1, p. 3–6, 2016.

MOREIRA, A.; PRATS-IRAOLA, P.; YOUNIS, M.; et al. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, v. 1, n. 1, p. 6–43, 2013.

MORISHITA, Y.; LAZECKY, M.; WRIGHT, T. J.; et al. LiCSBAS: An open-source insar time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor. Remote Sensing, v. 12, n. 3, p. 5–8, 2020.

MURA, J. C. Geocodificação Automática De Imagens De Radar De Abertura Sintética Interferométrico : Sistema Geo-InSAR, 154 f. Tese (Doutorado em Computação Aplicada) - Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, São Paulo, 2001.

MURA, J. C.; PARADELLA, W. R.; GAMA, F. F.; et al. Monitoring of non-linear ground movement in an open pit iron mine based on an integration of advanced DInSAR techniques using TerraSAR-X data. Remote Sensing, v. 8, n. 5, 2016.

NEGRÃO, P. Detecção de Deslocamentos Superficiais no Complexo Minerador de Germano, Marina-MG, Com Técnica Integrada de A-DINSAR Utilizando Dados TerraSAR-X, 104 f. Dissertação (Mestrado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos, São Paulo, 2018.

DE NOVELLIS, V.; ATZORI, S.; DE LUCA, C.; et al. DInSAR Analysis and Analytical Modeling of Mount Etna Displacements: The December 2018 Volcano-Tectonic Crisis. Geophysical Research Letters, v. 46, n. 11, p. 5817–5827, 2019.

OLIVEIRA, S. C.; ZÊZERE, J. L.; CATALÃO, J.; NICO, G. The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides, v. 12, n. 4, p. 703–719, 2015.

PARADELLA, WALDIR R.; FERRETTI, A.; MURA, J. C.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, v. 193, p. 61–78, 2015. Elsevier B.V. DOI: 10.1016/j.enggeo.2015.04.015.

PARADELLA, W. R.; MURA, J. C.; GAMA, F. F. Monitoramento DInSAR para Mineração e Geotecnologia. 1o ed. São Paulo: Oficina de Textos, 2021.

PARADELLA, W. R.; MURA, J. C.; GAMA, F. F.; SANTOS, A. R. Radar interferometry in surface deformation detection with orbital data. Revista Brasileira de Cartografia, v. 64, n. 4, p. 797–811, 2012.

PARADELLA, WALDIR RENATO; MURA, J. C.; GAMA, F. F.; SANTOS, A. R. DOS; SILVA, G. G. DA. Radares Imageadores (SAR) orbitais: tendências em sistemas e aplicações. Anais XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, Brasil, , n. 1, 2015.

PEI, Y.; WANG, H.; FANG, ZHILEI; LIAO, M.; FANG, ZHEN. Monitoring subsidence with short-term ASAR data in Shanghai. MIPPR 2009: Multispectral Image Acquisition and Processing, v. 7494, n. October 2009, p. 749421, 2009.

PERISSIN, D. Sarproz. Sarproz.Com, p. 7, 2015. Disponível em: <https://sarproz.com/publish/SARPROZ.pdf>. Acesso em: 19 abr. 2019.

PERISSIN, D.; FERRETTI, A.; PRATI, C.; FABIO, R. On the physical characterization of SAR Permanent Scatterers in urban areas. Proceedings of EUSAR’06, , n. 2, p. 20–21, 2006.

PERISSIN, D.; WANG, T. Time-Series InSAR Applications Over Urban Areas in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 4, n. 1, p. 92–100, 2011.

PERISSIN, D.; WANG, T. Repeat-pass SAR interferometry with partially coherent targets. IEEE Transactions on Geoscience and Remote Sensing, v. 50, n. 1, p. 271–280, 2012.

PERISSIN, D.; WANG, Z.; WANG, T. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. 34th International Symposium on Remote Sensing of Environment - The GEOSS Era: Towards Operational Environmental Monitoring, 2011.

PINTO, C. DE A.; PARADELLA, W. R.; MURA, J. C.; et al. Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X StripMap data. Journal of Applied Remote Sensing, v. 9, n. 1, p. 095978, 2015.

POLIDORI, L.; BACCI, P.-A.; SIMONETTO, E.; et al. On the potential of GPS-InSAR combination to improve the accuracy of ground deformation monitoring : simulation-based validation. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto - SBSR, v. 18, n. 1, p. 8467–8474, 2013.

RADUTU, A.; NEDELCU, I.; GOGU, C. R. An overview of ground surface displacements generated by groundwater dynamics , revealed by InSAR techniques. Procedia Engineering, v. 209, p. 119–126, 2017. Elsevier B.V. DOI: 10.1016/j.proeng.2017.11.137.

RAMOS, F. L. G. Desenvolvimento de Técnicas para Processamento de Dados Orbitais de Interferometria SAR em Regiões Equatoriais Úmidas: Estudo de Caso em Manaus, Amazonas, Brasil, 91 f. Tese (Doutorado em Engenharia Civil) - Universide Federal do Rio Janeiro - UFRJ, Rio de Janeiro, Rio de Janeiro, 2013.

RODRIGUEZ-LLOVERAS, X.; PUIG-POLO, C.; LANTADA, N.; GILI, J. A.; MARTURIÀ, J. Two decades of GPS/GNSS and DInSAR monitoring of Cardona salt mines (NE of Spain) - natural and mining-induced mechanisms and processes. Proceedings of the International Association of Hydrological Sciences, v. 382, p. 167–172, 2020.

ROQUE, D.; SIMONETTO, E.; FALCÃO, A. P.; et al. An analysis of displacement measurements for Lisbon, Portugal, using combined InSAR and GNSS data. European Space Agency, (Special Publication) ESA SP, v. SP-740, n. 1, 2016.

ROSEN, P. A.; HENSLEY, S.; JOUGHIN, I. R.; et al. Synthetic aperture radar interferometry. Proceedings of the IEEE, v. 88, n. 3, p. 333–382, 1999.

ROSEN, P. A.; HENSLEY, S.; PELTZER, G.; SIMONS, M. Updated repeat orbit interferometry package released. Eos, v. 85, n. 5, p. 47, 2004.

ROSEN, P.; PERSAUD, P. ROI_PAC Documentation Repeat Orbit Interferometry Package. , , n. 3, p. 1–63, 2000.

ROSEU, P. A.; GURROLA, E.; SACCO, G. F.; ZEBKER, H. The InSAR scientific computing environment. Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, v. 2012-April, p. 730–733, 2012.

RUDY, A. C. A.; LAMOUREUX, S. F.; TREITZ, P.; SHORT, N.; BRISCO, B. Seasonal and multi-year surface displacements measured by DInSAR in a High Arctic permafrost environment. International Journal of Applied Earth Observation and Geoinformation, v. 64, n. August 2017, p. 51–61, 2018. Elsevier. DOI: 10.1016/j.jag.2017.09.002.

RUIZ-ARMENTEROS, A. M.; BAKON, M.; LAZECKY, M.; et al. Multi-Temporal InSAR Processing Comparison in Presence of High Topography. Procedia Computer Science, v. 100, p. 1181–1190, 2016.

RUIZ-ARMENTEROS, A. M.; LAZECKY, M.; RUIZ-CONSTÁN, A.; et al. Monitoring continuous subsidence in the Costa del Sol (Málaga province, southern Spanish coast) using ERS-1/2, Envisat, and Sentinel-1A/B SAR interferometry. Procedia Computer Science, v. 138, p. 354–361, 2018. Elsevier B.V. DOI: 10.1016/j.procs.2018.10.050.

SANDWELL, D.; MELLORS, R.; TONG, X.; WEI, M.; WESSEL, P. Open Radar Interferometry Software for Mapping Surface Deformation. Eos, Transactions American Geophysical Union, v. 92, n. 28, p. 2011–2011, 2011.

SARMAP. PS Tutorial. 2014. Disponível em: < www.sarmap.ch/tutorials/PS_Tutorial_V_0_9.pdf>. Acesso em: 14 mar. 2019.

SILLERICO, E.; EZQUERRO, P.; MARCHAMALO, M.; et al. Monitoring ground subsidence in urban environments: M-30 tunnels under Madrid City (Spain). Ingenieria e Investigacion, v. 35, n. 2, p. 30–35, 2015.

SILVA, G. G.; MURA, J. C.; PARADELLA, W. R.; GAMA, F. F.; TEMPORIM, F. A. Monitoring of ground movement in open pit iron mines of Carajás Province (Amazon region) based on A-DInSAR techniques using TerraSAR-X data. Journal of Applied Remote Sensing, v. 11, n. 2, p. 026027, 2017.

SOUSA, J. J.; HOOPER, A. J.; HANSSEN, R. F.; BASTOS, L. C.; RUIZ, A. M. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, v. 115, n. 10, p. 2652–2663, 2011. Elsevier Inc. DOI: 10.1016/j.rse.2011.05.021.

SOUSA, J. J.; RUIZ, A. M.; HOOPER, A. J.; et al. Multi-temporal InSAR for Deformation Monitoring of the Granada and Padul Faults and the Surrounding Area (Betic Cordillera, Southern Spain). Procedia Technology, v. 16, p. 886–896, 2014. Elsevier B.V. DOI: 10.1016/j.protcy.2014.10.040 .

TAPETE, D.; FANTI, R.; CECCHI, R.; PETRANGELI, P.; CASAGLI, N. Satellite radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites. Journal of Geophysics and Engineering, v. 9, n. 4, 2012.

TEMPORIM, F. A.; GAMA, F. F.; MURA, J. C.; PARADELLA, W. R.; SILVA, G. G. Application of persistent scatterers interferometry for surface displacements monitoring in N5E open pit iron mine using TerraSAR-X data, in Carajás Province, Amazon region. Brazilian Journal of Geology, v. 47, n. 2, p. 225–235, 2017.

TREVETT, J. W. Imaging Radar for Resources Surveys. New York: Chapman&Hall, 1986.

TSANGARATOS, P.; LOUPASAKIS, C.; ILIA, I. Ground subsidence phenomena in Frakadona, West Thessaly, Greece. SPIEDigitalLibrary. September 2017, p. 40, 2017.

VELAME, M. G.; GAMA, F.; ESTE, R.; SUBSET, S. B.; TERRASAR-X, S. Estimativa de Deformação Vertical e Horizontal com o Uso de Interferometria Diferencial (DInSAR) em Órbitas de uma Mina de Ferro a Céu Aberto em Carajás-PA. Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto, p. 483–486, 2013.

VOLLRATH, A.; ZUCCA, F.; STRAMONDO, S. Monitoring of infrastructural sites by means of advanced multi-temporal DInSAR methods. SAR Image Analysis, Modeling, and Techniques XIII, v. 8891, n. October 2013, p. 88910D, 2013.

WEGNÜLLER, U.; WERNER, C.; STROZZI, T.; et al. Sentinel-1 Support in the GAMMA Software. Procedia Computer Science, v. 100, p. 1305–1312, 2016. DOI: 10.1016/j.procs.2016.09.246.

WERNER, C.; WEGMÜLLER, U.; STROZZI, T.; WIESMANN, A. GAMMA SAR and interferometric processing software. European Space Agency, (Special Publication) ESA SP, , n. 461, p. 211–219, 2000.

WERNER, C.; WEGMÜLLER, U.; STROZZI, T.; WIESMANN, A. Interferometric Point Target Analysis for Deformation Mapping. International Geoscience and Remote Sensing Symposium (IGARSS), v. 7, n. 1, p. 4362–4364, 2003.

WILEY, C. Pulsed Doppler Radar Method and Means. US Patent, 1954.

YANG, Z. Monitoring and Predicting Railway Subsidence Using InSAR and Time Series Prediction Techniques, 2015. University of Birmingham.

YHOKHA, A.; GOSWAMI, P. K.; CHANG, C. P.; et al. Application of persistent scatterer interferometry (PSI) in monitoring slope movements in Nainital, Uttarakhand lesser Himalaya, India. Journal of Earth System Science, v. 127, n. 1, p. 1–13, 2018. Springer India. DOI: 10.1007/s12040-017-0907-y.

YUNJUN, Z.; FATTAHI, H.; AMELUNG, F. Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers and Geosciences, v. 133, n. i, 2019.

DE ZAN, F.; GUARNIERI, A. M. TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing, v. 44, n. 9, p. 2352–2360, 2006.

Artigos mais lidos pelo mesmo(s) autor(es)

<< < 1 2 3