Feasibility of Using Data From Sensors Embedded in Smartphones to Measure Angles and Distances
Main Article Content
Abstract
Smartphones have become communication and information retrieval tools, but as part of their functionality they also contain a variety of sensors to determine their orientation and location. This research aims to evaluate the capacity of the embedded sensors: gyroscope, accelerometer and magnetometer, and the camera sensor, with the purpose of indirectly determining values of angles and distances, basic elements for the determination of positions by positioning techniques. The tests consisted of measuring some points in an internal environment and in an external environment. These were collected using a total station and with the application developed for comparison purposes. The results showed that, for the distances evaluated, the differences obtained between the data measured by the total station and by the application were a maximum of 1.54 meters and a minimum of 0.09 m. The measurements of the vertical angles showed, on average, approximately 2.09 degrees of discrepancies between the data compared to the total station data. The horizontal angles showed the greatest differences between the values measured with the application and the total station, which ranged from 4.83° to 69.32° evaluated indoors. These observed discrepancies increased with the increase of the measured and calculated angle, thus verifying a problem mainly in relation to the determination of the horizontal angles.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see "The Effect of Open Access").
References
CONTI, G.; RIBEIRO, S. R. A.; DIAS, A. H. Arquitetura de um sistema de informação geográfica mobile para coleta de dados geográficos baseados em conceitos de cloud computing e banco de dados NoSQL. In: CONGRESSO BRASILEIRO DE AGROINFORMÁTICA, 10, 2015, Ponta Grossa. Anais... Ponta Grossa: SBIAgro, 2015.
COSTANTINO, Domenica et al. Smartphone LiDAR Technologies for Surveying and Reality Modelling in Urban Scenarios: Evaluation Methods, Performance and Challenges. Applied System Innovation, v. 5, n. 4, p. 63, 2022. DOI: 10.3390/asi5040063
DAPONTE, Pasquale et al. State of the art and future developments of measurement applications on smartphones. Measurement, v. 46, n. 9, p. 3291-3307, 2013. DOI: 10.1016/j.measurement.2013.05.006
D'ELIA, M. G. et al. Measurement uncertainty on smart phone. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS, 2013, Milan. Proceedings... Milan: IEEE, 2013. p. 144-149. DOI: 10.1109/CIVEMSA.2013.6617411
HWANG, J. et al. Development of an RTK-GPS positioning application with an improved position error model for smartphones. Sensors, v. 12, n. 10, p. 12988-13001, 2012. DOI: 10.3390/s121012988
KUHLMANN, T.; GARAIZAR, P.; REIPS, U. Smartphone sensor accuracy varies from device to device in mobile research: The case of spatial orientation. Behavior research methods, v. 53, n. 1, p. 22-33, 2021. DOI: 10.3758/s13428-020-01404-5
LANE, N. D. et al. A survey of mobile phone sensing. IEEE Communications magazine, v. 48, n. 9, p. 140-150, 2010. DOI: 10.1109/MCOM.2010.5560598
MIT, App Inventor. Disponível em: <http://appinventor.mit.edu>. Acesso em: 1 nov. 2020.
MORIMOTO, C. E. Smartphones Guia Prático. GDH Press e Sul Editores, 2009.
ODENWALD, S. Smartphone sensors for citizen science applications: Radioactivity and magnetism. Citizen Science: Theory and Practice, v. 4, n. 1, 2019. DOI: 10.5334/cstp.158
PASSARO, V. et al. Gyroscope technology and applications: A review in the industrial perspective. Sensors, v. 17, n. 10, p. 2284, 2017. DOI: 10.3390/s17102284
PERES, F. F. F. et al. Realidade aumentada para o acesso à instrumentação da barragem de Itaipu. In: SEMINÁRO NACIONAL DE GRANDES BARRAGENS, 30, 2015, Foz de Iguaçu. Anais... Foz do Iguaçu: CBDB, 2015. p. 1-9.
SALIH, Y.; MALIK, A. S. Depth and geometry from a single 2d image using triangulation. In: INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS, 2012, Melbourne. Proceedings... Melbourne: IEEE, 2012. p. 511-515. DOI: 10.1109/ICMEW.2012.95
SAMPAIO, L. F.. Codigo MIT APP medidas. 2022. Disponível em: https://github.com/liviafariasampaio/MIT---medidas. Acesso em: 12 dez. 2022.
TURBAK, F.; WOLBER, D.; MEDLOCK-WALTON, P. The design of naming features in App Inventor 2. In: SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING, 2014, Melbourne. Proceedings... Melbourne: IEEE, 2014. p. 129-132. DOI: 10.1109/VLHCC.2014.6883034