MÉTODOS PARA REDUÇÃO DO ESPAÇO N-DIMENSIONAL DE IMAGENS ORBITAIS
Main Article Content
Abstract
também alta dimensionalidade (grande numero de bandas), dificultando seu processamento. Métodos de redução do
espaço n-dimensional tem a finalidade de reduzir a dimensionalidade e a redundância em dados orbitais. Neste trabalho
os principais métodos de redução do espaço n-dimensional foram comparados por meio de um estudo de caso com
imagem Landsat TM, visando a avaliação destes métodos com relação a perda de informações que afetam a exatidão da
classificação temática. Foram aplicados: seleção de bandas pela medida de separabilidade "divergência transformada",
Análise de informação mútua e índice V de Cramer; e transformação do espaço n-dimensional por Análise
discriminante canônica, Análise de componentes principais, e Tasseled Cap. Os resultados indicaram que o índice V de
Cramer se mostrou um método potencial para seleção de bandas. Já a análise de informação mútua apresentou
resultados não satisfatórios; e a transformação por análise discriminante canônica foi sensivelmente superior as demais
transformações.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see "The Effect of Open Access").