AT-SOM: MAPAS AUTO-ORGANIZÁVEIS ATENUANTES
Conteúdo do artigo principal
Resumo
Mapas Auto-Organizáveis (SOM) são modelos de Rede Neurais Artificiais inspirados no comportamento do córtex cerebral humano, os quais podem ser empregados na classificação de imagens. Este trabalho apresenta um método de classificação de imagens baseado em SOM, denominado Mapas Auto Organizáveis Atenuantes (At-SOM), capaz de reduzir os efeitos provocados pela classificação baseada em pixels. Para isto, o método desenvolvido é munido de um processo iterativo que reduz os valores dos pixels de um mesmo agrupamento. Um estudo de caso sobre a exatidão dos métodos At-SOM, Expectation Maximization, Fuzzy C-édias e o método SOM clássico foi realizado, tomando como base um problema específico de classificação de tipos de cobertura da terra em uma imagem do sensor LANDSAT-5 TM. O método proposto, associado à função de vizinhança topológica Chapéu Mexicano, mostrou maior acurácia com relação aos demais métodos.
Downloads
Métricas
Detalhes do artigo
Esta obra está licenciado com uma Licença Creative Commons Attribution 3.0 Unported License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Atribuição que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (veja "O Efeito do Acesso Aberto").