Supervised Classification of Burned Areas in the Cerrado using Spectral Attributes from Time Series based on the WFI Sensor
Main Article Content
Abstract
The Brazilian Cerrado evolved under natural presence of fires, but human-driven wildfires threaten the conservation of the ecosystems of this biome, as they are more intense, diffuse, and frequent. Consequently, the monitoring of fire events is an important instrument for environmental management. Exist two main approaches of wildfire studies considering remote sensing technologies and applications: the detection of fire foci (or active fires) and the mapping of burned areas. The objective of this article is to analyze the feasibility of using imagery time series from the WFI (Wide Field Imaging Camera) sensor on board the CBERS-4, CBERS-4A, and AMAZONIA-1 satellites for mapping burned areas observed in 2020, 2021 and 2022 in the Chapada dos Veadeiros National Park, by using Random Forest for supervised classifications. The time series comprises 235 images integrated into a regular grid, resulting in six independent datasets (NIR, BAI, EVI, GEMI, NDVI, and NDWI) utilized for training, validation, and test. Overall, we observed that NDVI yielded the lowest values of the accuracy metrics adopted and that when assessing the performance of the annual datasets, 2021 delivered the best results, followed by 2020 and 2022. Generalization tests conducted on annual datasets applying multitemporal models, i.e., models containing samples from all three years, produced IoUs above 70% in 2020 (excluding EVI and NDVI) and 2021 (excluding NDVI), and above 60% in 2022 (excluding NDVI).
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see "The Effect of Open Access").
References
BELGIU, M.; DRĂGUŢ, L. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, v. 114, p. 24–31, 2016. DOI: https://doi.org/10.1016/j.isprsjprs.2016.01.011.
BISPO, P. C.; PICOLI, M. C. A.; MARIMON, B. S.; JUNIOR, B. H. M.; PERES, C. A.; MENOR, I. O.; SILVA, D. E.; MACHADO, F. F.; ALENCAR, A. A. C.; ALMEIDA, C. A.; ANDERSON, L. O.; ARAGÃO., L. E. O. C.; BREUNIG, F. M.; DALAGNOL, R.; DINIZ-FILHO, J. A. F.; FERREIRA, L. G.; FERREIRA, M. E.; FISCH, G.; GALVÃO, L. S.; GIAROLLA, A.; GOMES, A. R.; JUNIOR, P. M.; KUCK, T. N.; LEHMANN, C. E. R.; LEMES, M. R., LIESENBERGM V.; LOYOLA, R.; MACEDO, M. N.; MENDES, F. S.; MIRANDA, F. S.; MIRANDA, S. C.; MORTON, D. C.; MOURA, Y. M.; OLDEKOP, J. A.; RAMOS-NETO, M. B.; ROSAN, T. M.; SAATCHI, S.; SANO, E. E.; SEGURA-GARCIA, C.; SHIMBO, J. Z.; SILVA, T. S. F.; TREVISAN, D. P.; ZIMBRES, B.; WIEDERKEHR, N. C.; SILVA-JUNIOR, C. H. L. Overlooking vegetation loss outside forests imperils the Brazilian Cerrado and other non-forest biomes. Nature Ecology & Evolution, v. 8, n. 1, p. 12-13, 2024, DOI: https://doi.org/10.1038/s41559-023-02256-w.
CARVALHO JÚNIOR, O. A. de C.; GUIMARÃES, R. F.; SILVA, C. R.; GOMES, R. A. T. Standardized time-series and interannual phenological deviation: New techniques for burned-area detection using long-term MODIS-NBR dataset. Remote Sensing, v. 7, n. 6, p. 6950–6985, 2015, DOI: https://doi.org/10.3390/rs70606950.
CHAVEZ-JR, P. S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, v. 24, n. 3, p. 459–479, 1988.
CHUVIECO, E.; MARTIN, M. P.; PALACIOS, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, v. 23, n. 23, p. 5103–5110, 2002. DOI: https://doi.org/10.1080/01431160210153129.
COLLI, G. R.; VIEIRA, C. R.; DIANESE, J. C. Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodiversity and Conservation, v. 29, n. 5, p. 1465–1475, 2020, DOI: https://doi.org/10.1007/s10531-020-01967-x.
COPPIN, P.; LAMBIN, E.; JONCKHEERE, I.; MUYS, B. Digital change detection methods in natural ecosystem monitoring: A review. International Journal of Remote Sensing, v. 25, n. 9, 2004, p. 1565-1596, DOI: https://doi.org/10.1080/0143116031000101675.
DURIGAN, G.; PILON, N. A. L.; ABREU, R. C. R.; HOFFMANN, W. A.; MARTINS, M.; FIORILLO, B. F.; ANTUNES, A. Z.; CARMIGNOTTO, A. P.; MARAVALHAS, J. B.; VIEIRA, J.; VASCONCELOS, H. L. No net loss of species diversity after prescribed fires in the Brazilian savanna. Frontiers in Forests and Global Change, v. 3, p. 13, 2020, DOI: https://doi.org/10.3389/ffgc.2020.00013.
EPIPHANIO, J. C. N. CBERS: estado atual e futuro. In: Simpósio Brasileiro de Sensoriamento Remoto, XIV, São José dos Campos, 2009. Anais… São José dos Campos, Brasil, 2009, p. 2001-2008.
FIDELIS, A.; ALVARADO, S. T.; BARRADAS, A. C. S.; PIVELLO, V. R. The year 2017: Megafires and management in the Cerrado. Fire, v. 1, n. 3, p. 49, 2018, DOI: https://doi.org/10.3390/fire1030049.
FILKOV, A. I.; TIHAY-FELICELLI, V.; MASOUDVAZIRI, N.; RUSH, D.; VALENCIA, A.; WANG, Y.; BLUNCK, D. L.; VALERO, M. M.; KEMPNA, K.; SMOLKA, J.; DE BEER, J.; CAMPBELL-LOCHRIE, Z.; CENTENO, F. R.; IBRAHIM, M. A.; LEMMERTZ, C. K.; TAM, W. C. A review of thermal exposure and fire spread mechanisms in large outdoor fires and the build environment. Fire Safety Journal, v. 140, 2023, DOI: https://doi.org/10.1016/j.firesaf.2023.103871.
HOFFMAN, C.; FERNANDES, P.; MORGAN, P.; REGO, F. C. Fire science: from chemistry to landscape management. 1. ed. Switzerland: Springer, 2021.
INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE (ICMBIO). Plano de manejo do Parque Nacional da Chapada dos Veadeiros. Brasília: ICMBIO, 2021.JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. 1. ed. São José dos Campos: Parêntese Editora, 2009.
JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. São José dos Campos: Parêntese, 2009. 598 p. 2.
JORDAHL, K.; BOSSCHE, J. V. D.; FLEISCHMANN, M.; WASSERMAN, J.; MCBRIDE, J.; GERARD, J.; TRATNER, J.; PERRY, M.; BADARACCO, A. G.; FARMER, C.; HJELLE, G. A.; SNOW, A. D.; COCHRAN, M.; GILLIES, S.; CULBERTSON, L.; BARTOS, M.; EUBANK, N.; MAXALBERT; BILOGUR, A.; REY, S.; REN, C.; ARRIBAS-BEL, D.; WASSER, L.; WOLF, L. J.; JOURNOIS, M.; WILSON, J.; GREENHALL, A.; HOLDGRAF, C.; FILIPE; LEBLANC, F. geopandas/geopandas: v0.8.1. jul. 2020. DOI: https://doi.org/10.5281/zenodo.3946761.
HUETE, A.; DIDAN, K.; MIURA, T.; RODRIGUEZ, E. P.; GAO, X.; FERREIRA, L. G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, v. 83, n. 1-2, p. 195–213, 2002. DOI: https://doi.org/10.1016/S0034-4257(02)00096-2
KEELEY, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, v. 18, n. 1, p. 116-126, 2009, DOI: https://doi.org/10.1071/WF07049.
LOEBMANN, D. G. S. W. Classificação fitofisionômica do Cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM LANDSAT. 65 p. Dissertação (Mestrado em Geografia) - Universidade de Brasília (UnB), Brasília, 2008.MATAVELI, G. A. V.; SILVA, M. E. S.; PEREIRA, G.; CARDOZO, F. S.; KAWAKUBO, F. S.; BERTANI, G.; COSTA, J. C.; RAMOS, R. de C.; SILVA, V. V. da. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Natural Hazards and Earth System Sciences, v. 18, n. 1, p. 125–144, 2018. DOI: https://doi.org/10.5194/nhess-18-125-2018.
MCARTHUR, A.; CHENEY, N. The characterization of fires in relation to ecological studies. Fire Ecology, v. 11, n. 1, p. 3–9, 2015, DOI: https://doi.org/10.1007/BF03400629.
MCFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v. 17, n. 7, p. 1425–1432, 1996.
MILNE, A. Change direction analysis using Landsat imagery: a review of methodology. In: International Geoscience and Remote Sensing Symposium, ‘'Remote Sensing: Moving Toward the 21st Century”, 1988, Edinburgh, UK. Anais… Edinburgh, UK , 1988, p. 541-544.
MMA. Brazil’s Forest Reference Emission Level for Reducing Emissions from Deforestation in the Cerrado biome for Results-based Payments for REDD+ under the United Nations Framework Convention on Climate Change. [S.l.]: MMA, Brasília, Brazil, 2017.
MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. D.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 853-858, 2000. DOI: https://doi.org/10.1038/35002501.
NEGRI, R. G.; LUZ, A. E.; FRERY, A. C.; CASACA, W. Mapping burned areas with multitemporal–multispectral data and probabilistic unsupervised learning. Remote Sensing, v. 14, n. 21, p. 5413, 2022, DOI: https://doi.org/10.3390/rs14215413.
NUNES, B. Y. C.; SIMÕES, L. S.; AQUINO, G. S. de; ROSA, R.; REZENDE, P. S. Correção atmosférica de imagens do sensor WFI do CBERS-4 através do método dark object subtraction (DOS). In: Simpósio Brasileiro de Sensoriamento Remoto, 19, 2019, Santos. Anais... São Jose dos Campos: INPE, 2019. p. 935-938.
OLDONI, L. Harmonization of WFI data from the CBERS-4, CBERS-4A and AMAZONIA-1 satellites for agricultural applications. 2022. 216 p. Tese (Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brasil, 2022.
PASTOR, C. Q.; SHIMABUKURO, Y. E. Estimación de superficie quemada mediante la aplicación sinérgica de obia y sma a imágenes WFI CBERS. Simpósio Brasileiro de Sensoriamento Remoto, XIV, São José dos Campos, 2009. Anais… São José dos Campos, Brasil, 2009, p. 2119-2126.
PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825-2830, 2011. DOI: https://doi.org/10.48550/arXiv.1201.0490.
PENHA, T. V. Detecção de áreas queimadas na Amazônia utilizando imagens de média resolução espacial, técnicas de GEOBIA e mineração de dados. 2018. 74 p. Dissertação (Mestrado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brasil, 2018.
PINTY, B.; VERSTRAETE, M. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetation, v. 101, p. 15-20, 1992. DOI: https://doi.org/10.1007/BF00031911.
PIVELLO, V. R.; VIEIRA, I.; CHRISTIANINI, A. V.; RIBEIRO, D. B.; MENEZES, L. da S.; BERLINCK, C. N.; MELO, F. P.; MARENGO, J. A.; TORNQUIST, C. G.; TOMAS, W. M.; OVERBECK, G. E. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, v. 19, n. 3, p. 233-255, 2021, DOI: https://www.perspectecolconserv.com/en-understanding-brazils-catastrophic-fires-causes-articulo-S2530064421000560.
RIBEIRO, A. F. S.; SANTOS, L.; RANDERSON, J. T.; URIBE, M. R.; ALENCAR, A. A. C.; MACEDO, M. N.; MORTON, D. C.; ZSCHEISCHLER, J.; SILVESTRINI, R. A.; RATTIS, L.; SENEVIRATNE, S. I.; BRANDO, P. M. The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Communications Earth & Environment, v. 5, n. 96, 2024, DOI: https://doi.org/10.1038/s43247-024-01248-3.
ROUSE, J. W.; HAAS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the great plains with ERTS. Washington: NASA, 1974. 309 p. 14.
RUSSO, G. M. Desenvolvimento de uma biblioteca Python para busca e processamento de dados do Satélite Sino-Brasileiro CBERS-04A. 51 p. Monografia (Graduação em Ciência da Computação) - Fundação Universidade Federal de Rondônia, Porto Velho, 2023.
SCHEFFLER, D. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for multi-sensor satellite data. Remote Sensing, v. 9, n. 7, p. 676, 2017, DOI: https://doi.org/10.3390/rs9070676.
SCHMIDT-ROHR, K. Why combustions are always exothermic, yielding about 418 kj per mole of o2. Journal of Chemical Education, v. 92, n. 12, p. 2094-2099, 2015, DOI: https://doi.org/10.1021/acs.jchemed.5b00333.
SHIMABUKURO, Y. E.; DUTRA, A. C.; ARAI, E.; DUARTE, V.; CASSOL, H. L. G.; PEREIRA, G.; CARDOZO, F. S. Mapping burned areas of Mato Grosso State Brazilian Amazon using multisensor datasets. Remote Sensing, v. 12, n. 22, p. 3827, 2020, DOI: https://doi.org/10.3390/rs12223827.
SIMON, M. F.; GRETHER, R.; QUEIROZ, L. P. de; SKEMA, C.; PENNINGTON, R. T.; HUGHES, C. E. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences, v. 106, n. 48, p. 20359-20364, 2009. DOI: https://doi.org/10.1073/pnas.0903410106.
SILVA, W. K. L.; GRANDE, E. T. G.; OLIVEIRA, D. C. Estudo do satélite brasileiro Amazonia-1 e de sua trajetória: Mapeamento sistemático e análise documental dos artefatos históricos–oficiais. Research, Society and Development, v. 11, n. 2, p. 1-35, 2022, DOI: https://doi.org/10.33448/rsd-v11i2.25894.
STROPPIANA, D.; BORDOGNA, G.; SALI, M.; BOSCHETTI, M.; SONA, G.; BRIVIO, P. A. A fully automatic, interpretable and adaptive machine learning approach to map burned area from remote sensing, ISPRS International Journal of Geo-Information, v. 10, n. 8, p. 546, 2021, DOI: https://doi.org/10.3390/ijgi10080546.
SZPAKOWSKI, D. M.; JENSEN, J. L. A review of the applications of remote sensing in fire ecology. Remote Sensing, v. 11, n. 22, p. 2638, 2019, DOI: https://doi.org/10.3390/rs11222638.
TIWARI, T.; TIWARI, T.; TIWARI, S. How artificial intelligence, machine learning and deep learning are radically different?. International Journal of Advanced Research in Computer Science and Software Engineering, v. 8, n. 2, p. 1, 2018.