Supervised Classification of Burned Areas in the Cerrado using Spectral Attributes from Time Series based on the WFI Sensor

Main Article Content

Alisson Cleiton de Oliveira
https://orcid.org/0000-0001-5177-3730
Brenda Oliveira Rocha
https://orcid.org/0000-0002-8286-4085
Cesar Augusto de Moraes Costa
https://orcid.org/0000-0002-3826-236X
Thales Sehn Körting
https://orcid.org/0000-0002-0876-0501

Abstract

The Brazilian Cerrado evolved under natural presence of fires, but human-driven wildfires threaten the conservation of the ecosystems of this biome, as they are more intense, diffuse, and frequent. Consequently, the monitoring of fire events is an important instrument for environmental management. Exist two main approaches of wildfire studies considering remote sensing technologies and applications: the detection of fire foci (or active fires) and the mapping of burned areas. The objective of this article is to analyze the feasibility of using imagery time series from the WFI (Wide Field Imaging Camera) sensor on board the CBERS-4, CBERS-4A, and AMAZONIA-1 satellites for mapping burned areas observed in 2020, 2021 and 2022 in the Chapada dos Veadeiros National Park, by using Random Forest for supervised classifications. The time series comprises 235 images integrated into a regular grid, resulting in six independent datasets (NIR, BAI, EVI, GEMI, NDVI, and NDWI) utilized for training, validation, and test. Overall, we observed that NDVI yielded the lowest values of the accuracy metrics adopted and that when assessing the performance of the annual datasets, 2021 delivered the best results, followed by 2020 and 2022. Generalization tests conducted on annual datasets applying multitemporal models, i.e., models containing samples from all three years, produced IoUs above 70% in 2020 (excluding EVI and NDVI) and 2021 (excluding NDVI), and above 60% in 2022 (excluding NDVI).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
OLIVEIRA, A. C. de; ROCHA, B. O.; COSTA, C. A. de M.; KÖRTING, T. S. Supervised Classification of Burned Areas in the Cerrado using Spectral Attributes from Time Series based on the WFI Sensor. Brazilian Journal of Cartography, [S. l.], v. 76, 2024. DOI: 10.14393/rbcv76n0a-71999. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/71999. Acesso em: 22 dec. 2024.
Section
Remote Sensing
Author Biography

Alisson Cleiton de Oliveira

Bachelor's degree in Environmental Management and Analysis from the Federal University of São Carlos (Ufscar), with an exchange period in Environmental Sciences at the Universidad Nacional del Sur (UNS), Argentina. I am currently studying for a Master's degree in Remote Sensing at the National Institute of Space Research (INPE), with research on computer applications for disasters and environmental monitoring using satellite imagery. Recently, I worked on calls from the International Charter Space and Major Disasters to map landslides and floods in Brazilian cities. I have experience in outreach projects and in the development of educational materials for non-formal environmental education and popularization of Earth sciences.

References

BELGIU, M.; DRĂGUŢ, L. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, v. 114, p. 24–31, 2016. DOI: https://doi.org/10.1016/j.isprsjprs.2016.01.011.

BISPO, P. C.; PICOLI, M. C. A.; MARIMON, B. S.; JUNIOR, B. H. M.; PERES, C. A.; MENOR, I. O.; SILVA, D. E.; MACHADO, F. F.; ALENCAR, A. A. C.; ALMEIDA, C. A.; ANDERSON, L. O.; ARAGÃO., L. E. O. C.; BREUNIG, F. M.; DALAGNOL, R.; DINIZ-FILHO, J. A. F.; FERREIRA, L. G.; FERREIRA, M. E.; FISCH, G.; GALVÃO, L. S.; GIAROLLA, A.; GOMES, A. R.; JUNIOR, P. M.; KUCK, T. N.; LEHMANN, C. E. R.; LEMES, M. R., LIESENBERGM V.; LOYOLA, R.; MACEDO, M. N.; MENDES, F. S.; MIRANDA, F. S.; MIRANDA, S. C.; MORTON, D. C.; MOURA, Y. M.; OLDEKOP, J. A.; RAMOS-NETO, M. B.; ROSAN, T. M.; SAATCHI, S.; SANO, E. E.; SEGURA-GARCIA, C.; SHIMBO, J. Z.; SILVA, T. S. F.; TREVISAN, D. P.; ZIMBRES, B.; WIEDERKEHR, N. C.; SILVA-JUNIOR, C. H. L. Overlooking vegetation loss outside forests imperils the Brazilian Cerrado and other non-forest biomes. Nature Ecology & Evolution, v. 8, n. 1, p. 12-13, 2024, DOI: https://doi.org/10.1038/s41559-023-02256-w.

CARVALHO JÚNIOR, O. A. de C.; GUIMARÃES, R. F.; SILVA, C. R.; GOMES, R. A. T. Standardized time-series and interannual phenological deviation: New techniques for burned-area detection using long-term MODIS-NBR dataset. Remote Sensing, v. 7, n. 6, p. 6950–6985, 2015, DOI: https://doi.org/10.3390/rs70606950.

CHAVEZ-JR, P. S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, v. 24, n. 3, p. 459–479, 1988.

CHUVIECO, E.; MARTIN, M. P.; PALACIOS, A. Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, v. 23, n. 23, p. 5103–5110, 2002. DOI: https://doi.org/10.1080/01431160210153129.

COLLI, G. R.; VIEIRA, C. R.; DIANESE, J. C. Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodiversity and Conservation, v. 29, n. 5, p. 1465–1475, 2020, DOI: https://doi.org/10.1007/s10531-020-01967-x.

COPPIN, P.; LAMBIN, E.; JONCKHEERE, I.; MUYS, B. Digital change detection methods in natural ecosystem monitoring: A review. International Journal of Remote Sensing, v. 25, n. 9, 2004, p. 1565-1596, DOI: https://doi.org/10.1080/0143116031000101675.

DURIGAN, G.; PILON, N. A. L.; ABREU, R. C. R.; HOFFMANN, W. A.; MARTINS, M.; FIORILLO, B. F.; ANTUNES, A. Z.; CARMIGNOTTO, A. P.; MARAVALHAS, J. B.; VIEIRA, J.; VASCONCELOS, H. L. No net loss of species diversity after prescribed fires in the Brazilian savanna. Frontiers in Forests and Global Change, v. 3, p. 13, 2020, DOI: https://doi.org/10.3389/ffgc.2020.00013.

EPIPHANIO, J. C. N. CBERS: estado atual e futuro. In: Simpósio Brasileiro de Sensoriamento Remoto, XIV, São José dos Campos, 2009. Anais… São José dos Campos, Brasil, 2009, p. 2001-2008.

FIDELIS, A.; ALVARADO, S. T.; BARRADAS, A. C. S.; PIVELLO, V. R. The year 2017: Megafires and management in the Cerrado. Fire, v. 1, n. 3, p. 49, 2018, DOI: https://doi.org/10.3390/fire1030049.

FILKOV, A. I.; TIHAY-FELICELLI, V.; MASOUDVAZIRI, N.; RUSH, D.; VALENCIA, A.; WANG, Y.; BLUNCK, D. L.; VALERO, M. M.; KEMPNA, K.; SMOLKA, J.; DE BEER, J.; CAMPBELL-LOCHRIE, Z.; CENTENO, F. R.; IBRAHIM, M. A.; LEMMERTZ, C. K.; TAM, W. C. A review of thermal exposure and fire spread mechanisms in large outdoor fires and the build environment. Fire Safety Journal, v. 140, 2023, DOI: https://doi.org/10.1016/j.firesaf.2023.103871.

HOFFMAN, C.; FERNANDES, P.; MORGAN, P.; REGO, F. C. Fire science: from chemistry to landscape management. 1. ed. Switzerland: Springer, 2021.

INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE (ICMBIO). Plano de manejo do Parque Nacional da Chapada dos Veadeiros. Brasília: ICMBIO, 2021.JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. 1. ed. São José dos Campos: Parêntese Editora, 2009.

JENSEN, J. R. Sensoriamento remoto do ambiente: uma perspectiva em recursos terrestres. São José dos Campos: Parêntese, 2009. 598 p. 2.

JORDAHL, K.; BOSSCHE, J. V. D.; FLEISCHMANN, M.; WASSERMAN, J.; MCBRIDE, J.; GERARD, J.; TRATNER, J.; PERRY, M.; BADARACCO, A. G.; FARMER, C.; HJELLE, G. A.; SNOW, A. D.; COCHRAN, M.; GILLIES, S.; CULBERTSON, L.; BARTOS, M.; EUBANK, N.; MAXALBERT; BILOGUR, A.; REY, S.; REN, C.; ARRIBAS-BEL, D.; WASSER, L.; WOLF, L. J.; JOURNOIS, M.; WILSON, J.; GREENHALL, A.; HOLDGRAF, C.; FILIPE; LEBLANC, F. geopandas/geopandas: v0.8.1. jul. 2020. DOI: https://doi.org/10.5281/zenodo.3946761.

HUETE, A.; DIDAN, K.; MIURA, T.; RODRIGUEZ, E. P.; GAO, X.; FERREIRA, L. G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, v. 83, n. 1-2, p. 195–213, 2002. DOI: https://doi.org/10.1016/S0034-4257(02)00096-2

KEELEY, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, v. 18, n. 1, p. 116-126, 2009, DOI: https://doi.org/10.1071/WF07049.

LOEBMANN, D. G. S. W. Classificação fitofisionômica do Cerrado no Parque Nacional da Chapada dos Veadeiros, GO, com a aplicação de uma análise combinatória com filtros adaptativos em imagens TM LANDSAT. 65 p. Dissertação (Mestrado em Geografia) - Universidade de Brasília (UnB), Brasília, 2008.MATAVELI, G. A. V.; SILVA, M. E. S.; PEREIRA, G.; CARDOZO, F. S.; KAWAKUBO, F. S.; BERTANI, G.; COSTA, J. C.; RAMOS, R. de C.; SILVA, V. V. da. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas. Natural Hazards and Earth System Sciences, v. 18, n. 1, p. 125–144, 2018. DOI: https://doi.org/10.5194/nhess-18-125-2018.

MCARTHUR, A.; CHENEY, N. The characterization of fires in relation to ecological studies. Fire Ecology, v. 11, n. 1, p. 3–9, 2015, DOI: https://doi.org/10.1007/BF03400629.

MCFEETERS, S. K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, v. 17, n. 7, p. 1425–1432, 1996.

MILNE, A. Change direction analysis using Landsat imagery: a review of methodology. In: International Geoscience and Remote Sensing Symposium, ‘'Remote Sensing: Moving Toward the 21st Century”, 1988, Edinburgh, UK. Anais… Edinburgh, UK , 1988, p. 541-544.

MMA. Brazil’s Forest Reference Emission Level for Reducing Emissions from Deforestation in the Cerrado biome for Results-based Payments for REDD+ under the United Nations Framework Convention on Climate Change. [S.l.]: MMA, Brasília, Brazil, 2017.

MYERS, N.; MITTERMEIER, R. A.; MITTERMEIER, C. G.; FONSECA, G. A. D.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 853-858, 2000. DOI: https://doi.org/10.1038/35002501.

NEGRI, R. G.; LUZ, A. E.; FRERY, A. C.; CASACA, W. Mapping burned areas with multitemporal–multispectral data and probabilistic unsupervised learning. Remote Sensing, v. 14, n. 21, p. 5413, 2022, DOI: https://doi.org/10.3390/rs14215413.

NUNES, B. Y. C.; SIMÕES, L. S.; AQUINO, G. S. de; ROSA, R.; REZENDE, P. S. Correção atmosférica de imagens do sensor WFI do CBERS-4 através do método dark object subtraction (DOS). In: Simpósio Brasileiro de Sensoriamento Remoto, 19, 2019, Santos. Anais... São Jose dos Campos: INPE, 2019. p. 935-938.

OLDONI, L. Harmonization of WFI data from the CBERS-4, CBERS-4A and AMAZONIA-1 satellites for agricultural applications. 2022. 216 p. Tese (Doutorado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brasil, 2022.

PASTOR, C. Q.; SHIMABUKURO, Y. E. Estimación de superficie quemada mediante la aplicación sinérgica de obia y sma a imágenes WFI CBERS. Simpósio Brasileiro de Sensoriamento Remoto, XIV, São José dos Campos, 2009. Anais… São José dos Campos, Brasil, 2009, p. 2119-2126.

PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.; THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS, R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.; BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn: machine learning in Python. Journal of Machine Learning Research, v. 12, p. 2825-2830, 2011. DOI: https://doi.org/10.48550/arXiv.1201.0490.

PENHA, T. V. Detecção de áreas queimadas na Amazônia utilizando imagens de média resolução espacial, técnicas de GEOBIA e mineração de dados. 2018. 74 p. Dissertação (Mestrado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brasil, 2018.

PINTY, B.; VERSTRAETE, M. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetation, v. 101, p. 15-20, 1992. DOI: https://doi.org/10.1007/BF00031911.

PIVELLO, V. R.; VIEIRA, I.; CHRISTIANINI, A. V.; RIBEIRO, D. B.; MENEZES, L. da S.; BERLINCK, C. N.; MELO, F. P.; MARENGO, J. A.; TORNQUIST, C. G.; TOMAS, W. M.; OVERBECK, G. E. Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, v. 19, n. 3, p. 233-255, 2021, DOI: https://www.perspectecolconserv.com/en-understanding-brazils-catastrophic-fires-causes-articulo-S2530064421000560.

RIBEIRO, A. F. S.; SANTOS, L.; RANDERSON, J. T.; URIBE, M. R.; ALENCAR, A. A. C.; MACEDO, M. N.; MORTON, D. C.; ZSCHEISCHLER, J.; SILVESTRINI, R. A.; RATTIS, L.; SENEVIRATNE, S. I.; BRANDO, P. M. The time since land-use transition drives changes in fire activity in the Amazon-Cerrado region. Communications Earth & Environment, v. 5, n. 96, 2024, DOI: https://doi.org/10.1038/s43247-024-01248-3.

ROUSE, J. W.; HAAS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the great plains with ERTS. Washington: NASA, 1974. 309 p. 14.

RUSSO, G. M. Desenvolvimento de uma biblioteca Python para busca e processamento de dados do Satélite Sino-Brasileiro CBERS-04A. 51 p. Monografia (Graduação em Ciência da Computação) - Fundação Universidade Federal de Rondônia, Porto Velho, 2023.

SCHEFFLER, D. AROSICS: An Automated and Robust Open-Source Image Co-Registration Software for multi-sensor satellite data. Remote Sensing, v. 9, n. 7, p. 676, 2017, DOI: https://doi.org/10.3390/rs9070676.

SCHMIDT-ROHR, K. Why combustions are always exothermic, yielding about 418 kj per mole of o2. Journal of Chemical Education, v. 92, n. 12, p. 2094-2099, 2015, DOI: https://doi.org/10.1021/acs.jchemed.5b00333.

SHIMABUKURO, Y. E.; DUTRA, A. C.; ARAI, E.; DUARTE, V.; CASSOL, H. L. G.; PEREIRA, G.; CARDOZO, F. S. Mapping burned areas of Mato Grosso State Brazilian Amazon using multisensor datasets. Remote Sensing, v. 12, n. 22, p. 3827, 2020, DOI: https://doi.org/10.3390/rs12223827.

SIMON, M. F.; GRETHER, R.; QUEIROZ, L. P. de; SKEMA, C.; PENNINGTON, R. T.; HUGHES, C. E. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences, v. 106, n. 48, p. 20359-20364, 2009. DOI: https://doi.org/10.1073/pnas.0903410106.

SILVA, W. K. L.; GRANDE, E. T. G.; OLIVEIRA, D. C. Estudo do satélite brasileiro Amazonia-1 e de sua trajetória: Mapeamento sistemático e análise documental dos artefatos históricos–oficiais. Research, Society and Development, v. 11, n. 2, p. 1-35, 2022, DOI: https://doi.org/10.33448/rsd-v11i2.25894.

STROPPIANA, D.; BORDOGNA, G.; SALI, M.; BOSCHETTI, M.; SONA, G.; BRIVIO, P. A. A fully automatic, interpretable and adaptive machine learning approach to map burned area from remote sensing, ISPRS International Journal of Geo-Information, v. 10, n. 8, p. 546, 2021, DOI: https://doi.org/10.3390/ijgi10080546.

SZPAKOWSKI, D. M.; JENSEN, J. L. A review of the applications of remote sensing in fire ecology. Remote Sensing, v. 11, n. 22, p. 2638, 2019, DOI: https://doi.org/10.3390/rs11222638.

TIWARI, T.; TIWARI, T.; TIWARI, S. How artificial intelligence, machine learning and deep learning are radically different?. International Journal of Advanced Research in Computer Science and Software Engineering, v. 8, n. 2, p. 1, 2018.

Most read articles by the same author(s)

1 2 > >>