Comparing the Segment Anything Model with Region Growing Algorithms in the detection of irrigated croplands

Conteúdo do artigo principal

Felipe Gomes Petrone
https://orcid.org/0009-0003-8140-6925
Darlan Teles da Silva
https://orcid.org/0000-0001-9784-6464
Michel Eustáquio Dantas Chaves
https://orcid.org/0000-0002-1498-6830
Thales Sehn Körting
https://orcid.org/0000-0002-0876-0501
Marcos Adami
https://orcid.org/0000-0003-4247-4477
Aluizio Brito Maia
https://orcid.org/0000-0002-0056-6157
Ieda Del’Arco Sanches
https://orcid.org/0000-0003-1296-0933
Leila Maria Garcia Fonseca
https://orcid.org/0000-0001-6057-7387

Resumo

The advance of remote sensing and geotechnologies has helped to solve agricultural-related problems, especially those connected to management practices such as irrigation. Image segmentation techniques, for example, bring the possibility of identifying areas and borders of irrigated croplands,a factor that can enhance monitoring and yield estimates. In this research field, a recent innovation is the Segment Anything Model (SAM) algorithm. Thus, this study aimed to compare SAM with two well-known remote sensing image segmentation algorithms, Region Growing and Baatz-Schape, in order to delineate irrigated agricultural lands in the Brazilian semiarid region. The findings indicate that SAM has the potential to generate homogeneous segments when examining such lands. However, it requires refinements in order to distinguish fields with varying crops and to improve the high computational cost of SAM, especially for big data. Additionally, the choice and testing of parameters are crucial for the optimal performance of segmentation algorithms.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
PETRONE, F. G.; SILVA, D. T. da; CHAVES, M. E. D.; KÖRTING, T. S.; ADAMI, M.; MAIA, A. B.; SANCHES, I. D.; FONSECA, L. M. G. Comparing the Segment Anything Model with Region Growing Algorithms in the detection of irrigated croplands. Revista Brasileira de Cartografia, [S. l.], v. 76, 2024. DOI: 10.14393/rbcv76n0a-72592. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/72592. Acesso em: 21 dez. 2024.
Seção
Seção Especial "Brazilian Symposium on GeoInformatics - GEOINFO 2023"

Referências

ANGELOTTI, Francislene; HAMADA, Emília; MAGALHÃES, Edineide Elisa; GHINI, Raquel;

GARRIDO, Lucas da Ressureição; PEDRO, Mário José. Climate change and the occurrence of

downy mildew in Brazilian grapevines. Pesquisa Agropecuária Brasileira, SciELO Brasil,

v. 52, p. 426–434, 2017.

ARAUJO, Leandro Moscôso; TEIXEIRA, Antônio Heriberto de Castro; BASSOI, Luís Henrique.

Evapotranspiration and biomass modelling in the Pontal Sul Irrigation Scheme. International

Journal of Remote Sensing, Taylor & Francis, v. 41, n. 6, p. 2326–2338, 2020.

BARTH, R.; IJSSELMUIDEN, J.; HEMMING, J.; HENTEN, E.J. Van. Data synthesis methods

for semantic segmentation in agriculture: A Capsicum annuum dataset. Computers and

Electronics in Agriculture, v. 144, p. 284–296, 2018. ISSN 0168-1699. DOI: https://doi.org/

1016/j.compag.2017.12.001. Disponível em: <https://www.sciencedirect.com/science/

article/pii/S0168169917305689>.

BINS, Leonardo S.; FONSECA, Leila M. G.; ERTHAL, Guaraci J.; MITSUO, Fernando. Satellite

Imagery Segmentation: a region growing approach. In. Disponível em: <https://api.semanticsch

olar.org/CorpusID:2406096>.

BRASIL, Paulilo; MEDEIROS, Pedro. NeStRes–model for operation of Non-Strategic Reservoirs for

irrigation in drylands: model description and application to a semiarid basin. Water Resources

Management, v. 34, n. 1, p. 195–210, 2020.

CAI, Ximing; ROSEGRANT, Mark. Global water demand and supply projections: part 1. A modeling

approach. Water International, v. 27, n. 2, p. 159–169, 2002.

CÂMARA, Gilberto; SOUZA, Ricardo; FREITAS, Ubirajara; GARRIDO, Juan. SPRING: Integrating

remote sensing and GIS by object-oriented data modelling. Computers & Graphics, v. 20,

n. 3, p. 395–403, 1996.

COPERNICUS. Sentinel-2. [S. l.: s. n.], jan. 2023. https://dataspace.copernicus.eu/explore-data/datacollections/sentinel-data/sentinel-2.

DIAS, Lívia; PIMENTA, Fernando; SANTOS, Ana; COSTA, Marcos; LADLE, Richard. Patterns of

land use, extensification, and intensification of Brazilian agriculture. Global change biology,

v. 22, n. 8, p. 2887–2903, 2016.

HAGEL, Heinrich; RINCON, Daniela; DOLUSCHITZ, Reiner. Fruit Production in Brazil’s Desert

and Sustainability Aspects of Irrigated Family Farming Along the Lower-Middle Sao Francisco

River: A Case Study. In: WATER and Wastewater Management. [S. l.: s. n.], 2022. P. 269–281.

INPE, National Institute for Space Research. TerraView. [S. l.: s. n.], 2013.

KOTARIDIS, Ioannis; LAZARIDOU, Maria. Remote sensing image segmentation advances: A metaanalysis. ISPRS Journal of Photogrammetry and Remote Sensing, v. 173, p. 309–322,

NATIONS, United. The 17 Goals. [S. l.: s. n.], fev. 2024. https://sdgs.un.org/goals.

OSCO, Lucas; WU, Qiusheng; LEMOS, Eduardo; GONÇALVES, Wesley; RAMOS, Ana; LI, Jonathan;

JUNIOR, José. The segment anything model (sam) for remote sensing applications: From zero

to one shot. International Journal of Applied Earth Observation and Geoinformation,

v. 124, p. 103540, 2023.

OZDOGAN, Mutlu; YANG, Yang; ALLEZ, George; CERVANTES, Chelsea. Remote Sensing of

Irrigated Agriculture: Opportunities and Challenges. Remote Sensing, v. 2, n. 9, p. 2274–2304,

PETRONE, Felipe; SILVA, Darlan da; MAIA, Aluizio; SANCHES, Ieda; CHAVES, Michel; ADAMI,

Marcos; FONSECA, Leila. Detecting Irrigated Croplands: A Comparative Study with Segment

Anything Model and Region-Growing Algorithms. In: PROCEEDINGS of the 24º. Brazilian

Symposium on Geoinformatics, São José dos Campos, SP. [S. l.: s. n.], 2023.

POTAPOV, Peter; TURUBANOVA, Svetlana; HANSEN, Matthew; TYUKAVINA, Alexandra; ZALLES, Viviana; KHAN, Ahmad; SONG, Xiao-Peng; PICKENS, Amy; SHEN, Quan; CORTEZ,

Jocelyn. Global maps of cropland extent and change show accelerated cropland expansion in

the twenty-first century. Nature Food, v. 3, n. 1, p. 19–28, 2022.

RESENDE, Geraldo; YURI, Jony. Yield of watermelon cultivars in different spaces and planting times

at submiddle São Francisco Valley., 2021.

RODRIGUES, Geraldo Stachetti; IRIAS, Luiz José Maria. Considerações sobre os Impactos

Ambientais da Agricultura Irrigada. Jaguariúna, SP.: Embrapa, 2004. P. 1–7.

SAVENIJE, Hubert; VAN DER ZAAG, Pieter. Water as an economic good and demand management

paradigms with pitfalls. Water international, v. 27, n. 1, p. 98–104, 2002.

SHIMABUKURO, Yosio; NOVO, Evlyn; PONZONI, Flávio. Índice de vegetação e modelo linear de

mistura espectral no monitoramento da região do Pantanal. Pesquisa Agropecuária Brasileira,

v. 33, n. 13, p. 1729–1737, 1998.

SILVA, Bruno; RODRIGUES, Rodrigo; HEISKANEN, Janne; ABERA, Temesgen; GASPARETTO,

Suelen; BIASE, Adriele; BALLESTER, Maria; MOURA, Yhasmin; PIEDADE, Sônia; SILVA,

Andrezza et al. Evaluating the temporal patterns of land use and precipitation under desertification

in the semi-arid region of Brazil. Ecological Informatics, v. 77, p. 102192, 2023.

SUN, Xian; WANG, Bing; WANG, Zhirui; LI, Hao; LI, Hengchao; FU, Kun. Research progress on

few-shot learning for remote sensing image interpretation. IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, v. 14, p. 2387–2402, 2021.

VENDRUSCOLO, Jhony; PEREZ-MARIN, Aldrin; FELIX, Evaldo; FERREIRA, Karoline; CAVALHEIRO, Wanderson; FERNANDES, Izaias. Monitoring desertification in semiarid Brazil:

using the Desertification Degree Index (DDI). Land Degradation & Development, v. 32, n. 2,

p. 684–698, 2021.

VIEIRA, Denis; SANCHES, Ieda; MONTIBELLER, Bruno; PRUDENTE, Victor; HANSEN, Matthew;

BAGGETT, Antoine; ADAMI, Marcos. Cropland expansion, intensification, and reduction

in Mato Grosso state, Brazil, between the crop years 2000/01 to 2017/18. Remote Sensing

Applications: Society and Environment, v. 28, p. 100841, 2022.

YU, Jiaqian; XU, Jingtao; CHEN, Yiwei; LI, Weiming; WANG, Qiang; YOO, Byungin; HAN, Jae-Joon.

Learning Generalized Intersection Over Union for Dense Pixelwise Prediction. In .

Proceedings of the 38th International Conference on Machine Learning. [S. l.]: PMLR, 18–

Jul 2021. v. 139. (Proceedings of Machine Learning Research), p. 12198–12207. Disponível

em: <https://proceedings.mlr.press/v139/yu21e.html>.

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 3 4 > >>