Resumo
Urban infrastructure is a challenge for municipal managers in Brazil, given the rapid urbanization that has occurred in the country and the population growth in these locations. The inclusion of green characteristics in the urban space has contributed to the human needs of residents in this space, areas that allow the filtering of pollutants in the air and water, greater absorption of rainwater, noise reduction, scenic beauty, among other characteristics that are related to ecosystem services. In this context, the objective of the study is to identify the opportunity cost for the existence of urban green areas. This was done using the methodological resources available in environmental economics, which employs the opportunity cost based on the assessment of the net benefit of conservation. Primary and secondary data were used, the sources being literature and satellite images. Considering the analysis period from 2018 to 2020. The results indicate that the opportunity cost is greater than the amounts that can be collected through the commercialization of ecosystem services, implying that the landowners of the Urban Ecological Corridor projected in the municipality of Dourados - Mato Grosso do Sul, should be financially supported to maintain these services in green areas, given their importance to people's quality of life.
Referências
ACHMAD, A.; HASYIM, S.; DAHLAN, B. et al. Modeling of urban growth in tsunami-prone city using logistic regression: Analysis of Banda Aceh, Indonesia. Applied Geography, v. 62, p.237–246, 2015. https://doi.org/10.1016/j.apgeog.2015.05.001
AHERN, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landscape Ecology, v.28, p. 1203–1212, 2013. https://doi.org/10.1007/s10980-012-9799-z
ALHO, C.J.R. Desafios para a conservação do Cerrado, em face das atuais tendências de uso e ocupação. In: SCARIOT, A.; SOUSA-SILVA, J.C.; FELFILI, J.M. (Org.). Cerrado: ecologia, biodiversidade e conservação. Brasília: Ministério do Meio Ambiente, p.367-381, 2005.
ANGEL, S.; PARENT, J.; CIVCO, D. L.; BLEI, A.; POTERE, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, v. 75, n. 2, p. 53–107, 2011. https://doi.org/10.1016/j.progress.2011.04.001
AVTAR, R.; TRIPATHI, S.; AGGARWAL, A. K.; KUMAR, P. Population–urbanization–energy Nexus: A review. Resources, 8(136), 2019. https://doi.org/10.3390/resources8030136
BATTISTA, G.; DE LIETO VOLLARO, R.; ZINZI, M. Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Sol. Energy, v.180, p. 608-621, 2019. https://doi.org/10.1016/j.solener.2019.01.074
BENEDICT, M.; MCMAHON, E. In: BENEDICT, M; MCMAHON, E. (Eds.). Green infrastructure. Linking landscape and communities. Washington, DC. 2012.
BEUREN, I. M. Conceitualização e contabilização do custo de oportunidade. Caderno de Estudos n. 8, FIPECAFI, São Paulo, 1993. https://doi.org/10.1590/S1413-92511993000100003
BOTTALICO, F.; CHIRICI, G.; GIANNETTI, F.; DE MARCO, A.; NOCENTINI, S.; PAOLETTI, E.; TRAVAGLINI, D. Air pollution removal by green infraestructures and urban forest in the city of Florence. Procedia, v. 8, p. 244–251, 2016. https://doi.org/10.1016/j.aaspro.2016.02.099
BRASIL. Ministério do Meio Ambiente. Secretaria de Biodiversidade e Florestas. Núcleo Mata Atlântica e Pampa. Org.: Maura Campanili e Wigold Bertoldo Shaffer. Mata Atlântica: Patrimônio Nacional dos Brasileiros. MMA. Série Biodiversidade, 408p., 2010.
CHOI, A.S.; FIELDING, K.S. Environmental attitudes as WTP predictors: a case study involving endangered species. Ecol. Econ. v.89, 24–32, 2013. https://doi.org/10.1016/j.ecolecon.2013.01.027
COLLIER, P.; VENABLES, A. J. Urbanization in developing economies: The assessment. Oxford Review of Economic Policy, 33, p. 355–372, 2017. https://doi.org/10.1093/oxrep/grx035
CONNOP, S.; VANDERGERT, P.; EISENBERG, B.; COLLIER, M.J.; NASH, C.; CLOUGH, J.; NEWPORT, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environmental Science & Policy, 62, 99-111, 2016. https://doi.org/10.1016/j.envsci.2016.01.013
COSTANZA, R.; D’ARGE, R.; DE GROOT, R. The value of the world’s ecosystem services and natural capital. Nature, v.387, p. 253–260, 1997. https://doi.org/10.1038/387253a0
CRIPPA, M.; OREGGIONI, G.; GUIZZARDI, D.; MUNTEAN, M.; SCHAAF, E.; LO VULLO, E.; SOLAZZO, E.; MONFORTI-FERRARIO, F.; OLIVIER, J.; VIGNATI, E. Fossil CO2 and GHG emissions of all world countries, EUR 29849 EN, Publications Office of the European Union, Luxembourg, 2019.
DAILY, G. C. Nature’s services. Washington, DC: Island Press., 1997.
DOMINICI, M.C.M. Comércio internacional de carbono - possibilidades para o Distrito Federal. Companhia de Planejamento do Distrito Federal, 2018.
DOS SANTOS, S.; ADAMS, E.; NEVILLE, G.; WADA, Y.; DE SHERBININ, A.; BERNHARDT, E. M.; ADAMO, S. Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions. Science of the Total Environment, v.607, p.497–508, 2017. https://doi.org/10.1016/j.scitotenv.2017.06.157
DUARTE, B.B.; TUPIASSU, L.; NOBRE, S. O mercado de carbono na política de mitigação das mudanças climáticas. Revista de Direito Ambiental e Socioambientalismo, v. 6, n.2, p.93–108,2020. https://doi.org/10.26668/IndexLawJournals/2525-9628/2020.v6i2.7203
EMBRAPA. Guia Clima. 2021. Available: https://clima.cpao.embrapa.br/?lc=site/estatisticas/estatisticas. Access on: jun. 2021.
FERREIRA, W. P. M. Radiação Solar em Sete Lagoas – MG. Sete Lagoas: Embrapa, 2006. 21p.
GANT, R. L.; ROBINSON, G. M.; FAZAL, S. Land-use change in the ‘edgelands’: Policies and pressures in London’s rural–urban fringe. Land Use Policy, v. 28, n. 1, p. 266–279, 2011. https://doi.org/10.1016/j.landusepol.2010.06.007
GASTON, K. J.; ÁVILA-JIMENEZ, M. L.; EDMONDSON, J. L. Managing urban ecosystems for goods and services. Journal of Applied Ecology, v. 50, n. 4, p. 830–840, 2013. https://doi.org/10.1111/1365-2664.12087
GOWARD, S. N.; TUCKER, C. J.; DYE, D. G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Plant Ecology, v. 64, n.1, p.3-14, 1985. https://doi.org/10.1007/BF00033449
GRIZZETTI, B.; LANZANOVA, D.; LIQUETE, C.; REYNAUD, A.; CARDOSO, A.C. Assessing water ecosystem services for water resource management. Environ. Sci. Policy, v. 61, p. 194-203, 2016. https://doi.org/10.1016/j.envsci.2016.04.008
GUERRY, A.D.; POLASKY, S.; LUBCHENCO, J.; CHAPLIN-KRAMER, R. DAILY, G.C.; GRIFFIN, R. et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences, v. 112, n. 24, p. 7348-7355, 2015. https://doi.org/10.1073/pnas.1503751112
HALKOS, G.; MATSIORI, S. Environmental attitude, motivations and values for marine biodiversity protection. Journal of Behavioral and Experimental Economics v.69, p. 61–70, 2017. https://doi.org/10.1016/j.socec.2017.05.009
IBAMA – INSTITUTO BRASILEIRO DO MEIO AMBIENTE E DOS RECURSOS NATURAIS. Modelo de valoração econômica dos impactos ambientais em unidades de conservação – Empreendimentos de Comunicação, Rede Elétrica e Dutos – Estudo Preliminar. Rio de Janeiro: IBAMA/RJ, 2002.
IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Banco de Informações Ambientais. 2021. Available: https://bdiaweb.ibge.gov.br/#/home. Access on: may. 2021.
IBGE. Malhas Municipais. 2013. Disponível em: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html. Acesso em: nov. 2021.
IPCC. AR5 Climate Change 2014: Impacts, Adaptation, and Vulnerability. Disponível em: https://www.ipcc.ch/report/ar5/wg2/. Acesso em: out. 2021.
KERTÉSZ, A.; NAGY, L.A.; BALAZS, B. Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy, v.80, p. 430–438, 2017. https://doi.org/10.1016/j.landusepol.2018.04.005
KLINK, C.A.; MACHADO, R.B. Conservation of the Brazilian Cerrado. Conservation Biology, v.19, p. 707–713, 2005. https://doi.org/10.1111/j.1523-1739.2005.00702.x
LI, F.; LIU, X.; ZHANG, X.; ZHAO, D.; LIU, H.; ZHOU, C.; WANG, R. Urban ecological infrastructure: An integrated network for ecosystem services and sustainable urban systems. Journal of Cleaner Production, v.163, p.S12–S18, 2017. https://doi.org/10.1016/j.jclepro.2016.02.079
LINARD, C.; TATEM, A.; GILBERT, M. Modelling spatial patterns of urban growth in Africa. Applied Geography, v.44, p. 23–32, 2013. https://doi.org/10.1016/j.apgeog.2013.07.009
LI, Y.Y.; LI, J.Q.; LI, Z.L.; LIU, X.J.; TIAN, Y.; LI, A.H. Issues and challenges for the study of the interconnected river system network. Resour. Sci., v.33, p. 386-391, 2011.
MARTÍNEZ, L. Health differences in an unequal city. Cities, 108, 2021. https://doi.org/10.1016/j.cities.2020.102976
McCALLUM, I.; WAGNER, W.; SCHMULLIUS, C.; SHVIDENKO, A.; OBERSTEINER, M.; FRITZ, S.; NILSSON, S. Comparison of four global FAPAR datasets over Northern Eurasia for the year 2000. Remote Sensing of Environment, v. 114, n. 5, p. 941–949, 2010. https://doi.org/10.1016/j.rse.2009.12.009
MINISTÉRIO DO MEIO AMBIENTE. Corredores Ecológicos: iniciativa brasileira no contexto continental. P. 41, 2016.
MONTEITH, J. L. Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London, v. 281, p. 277-294, 1977. https://doi.org/10.1098/rstb.1977.0140
MONTEITH, J. L. Principies of environmental physics. London: Edward Amold, 1973. 241 p. https://doi.org/10.1098/rstb.1977.0140
MITSCHA, W.J.; DAY JR., J.W. Restoration of wetlands in the Mississippie-Ohio-Missouri (MOM) River Basin: experience and needed research. Ecol. Eng. v.26, p. 55-69, 2006. https://doi.org/10.1016/j.ecoleng.2005.09.005
MURRAY‐SMITH, C.; BRUMMITT, N.A.; OLIVEIRA‐FILHO, A.T.; BACHMAN, S.; MOAT, J.; LUGHADHA, E.M.N.; LUCAS, E.J. Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology, v. 23, n. 1, 151-163, 2009. https://doi.org/10.1111/j.1523-1739.2008.01075.x
MYERS, N.; MITTERMEIER, R.A.; MITTERMEIER, C.G.; FONSECA, G.A.B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v.403, p.853– 858, 2000. https://doi.org/10.1038/35002501
NASCIMENTO, R. S.; BRITO, J. I. B.; BRAGA, C. C. Estimativa da Produtividade Primária usando dados de IVDN para o Estado da Paraíba. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, INPE, p. 5321-5327, 2009.
NORTON-GRIFFITHS M.; SOUTHEY, C. The opportunity costs of biodiversity conservation: a case stufy of Kenya. CSERGE GEC. Centre for Social and Economic Research on the Global Environment, 1993.
NYELELE, C.; KROLL, C.N. A multi-objective decision support framework to prioritize tree planting locations in urban áreas. Landscape and Urban Planning, v.214, 2021. https://doi.org/10.1016/j.landurbplan.2021.104172
OLIVEIRA, R.R.; ZAÚ, A.S.; LIMA, D.F.; RODRIGUES, H.C.; AMORIM, H.B. Formulação de custos ambientais no Maciço da Tijuca (Rio de Janeiro, Brasil). Oecologia Brasiliensis: Estrutura, Funcionamento e Manejo dos Ecossistemas Brasileiros, v.1, p. 557-568, 1995. https://doi.org/10.4257/oeco.1995.0101.30
ORSATO, R. Social Learning for Anticipator y Adaptation to Climate Change. Organization & Environment, 32(4): 416-440, 2019. https://doi.org/10.1177/1086026618775325
PASCUAL, U.; BALVANERA, P.; DÍAZ, S.; PATAKI, G.; ROTH, E.; STENSEKE, M. et al. Valuing nature’s contributions to people: The IPBES approach. Current Opinion in Environmental Sustainability, v.26, p.7-16, 2017. https://doi.org/10.1016/j.cosust.2016.12.006
PENG, J.; ZHAO, H.; LIU, Y. Urban ecological corridors construction: A review. Acta Ecologica Sinica, v. 37, n.1, p. 23–30, 2017. https://doi.org/10.1016/j.chnaes.2016.12.002
PICARD, P.M.; TRAN, T.T.H. Small urban green areas. Journal of Environmental Economics and Management, v.106, 2021. https://doi.org/10.1016/j.jeem.2021.102418
PIETROSTEFANI, E.; HOLMAN, N. The politics of conservation planning: A comparative study of urban heritage making in the Global North and the Global South. Progress in Planning, 2020. https://doi.org/10.1016/j.progress.2020.100505
PONZONI, F. J.; SHIMABUKURO, Y. E. Sensoriamento remoto no estudo da vegetação. São José dos Campos, SP: A. Silva Ed., 2009.
ROUSE, J. W.; HAAS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the great plains with ERTS. In: Proceeding of ERTS-1, v. 3, p. 309-317, 1973. https://doi.org/10.1109/TGE.1973.294284
RUIMY, A.; SAUGIER, B.; DEDIEU, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, v. 99, p. 5263-5283, 1994. https://doi.org/10.1029/93JD03221
SANTOS, J.E.; NOGUEIRA, F.; PIRES, J.S.R.; OBARA, A. T.; PIRES, A. M.Z.C.R. Funções Ambientais e Valores dos Ecossistemas Naturais Estudo de Caso: Estação Ecológica de Jataí, v.1., São Paulo: Rima Editora, 2000.
SANTOS, J.S.; LEITE, C.C.C.; VIANA, J.C.C; DOS SANTOS, A.R.; FERNANDES, M.M.; DE SOUZA ABREU, V.; DO NASCIMENTO, T.P.; DOS SANTOS, L.S.; DE MOURA FERNANDES, M.R.; DA SILVA, G.F.; DE MENDONÇA, A.R. Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecol. Indic., v.88, p. 414-424, 2018. https://doi.org/10.1016/j.ecolind.2018.01.011
SCOTT, A.; STORPER, M. The Nature of Cities: The Scope and Limits of Urban. Theory. International Journal of Urban and Regional Research, v. 39, n. 1, p. 1–15, 2015. https://doi.org/10.1111/1468-2427.12134
SETO, K. C.; GÜNERALP, B.; HUTYRA, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Pnas, v. 109, n.40, p. 16083–16088, 2012. https://doi.org/10.1073/pnas.1211658109
SIMATELE, D.; SIMATELE, M. Climate variability and urban food security in sub-Saharan Africa: Lessons from Zambia using an asset-based adaptation framework. South African Geographical Journal, v.97, p. 243–263, 2015. https://doi.org/10.1080/03736245.2014.924873
SOBRINO, J. A.; RAISSOUNI, N. Toward remote sensing methods for land cover dynamic monitoring: application to Marocco. International Journal of Remote Sensing, v. 21, p. 353-363, 2000. https://doi.org/10.1080/014311600210876
SODOUDI, S.; ZHANG, H.; CHI, X.; MÜLLER, F.; LI, H. The influence of spatial configuration of green areas on microclimate and thermal comfort. Urban For. Urban Green., v.34, p. 85–96, 2018. https://doi.org/10.1016/j.ufug.2018.06.002
SZEICZ, G. Solar radiation for plant growth. Journal of Applied Ecology, v.11, p. 617-36, 1974. https://doi.org/10.2307/2402214
TABARELLI, M.; AGUIAR, A.V.; RIBEIRO, M.C.; METZGER, J.P.; PERES, C.A. Prospects for biodiversity conservation in the Atlantic Forest: Lessons from aging human-modified landscapes. Biol. Conserv., v.143, p. 2328-2340, 2010. https://doi.org/10.1016/j.biocon.2010.02.005
TABARELLI, M.; PINTO, L.P.; SILVA, J.M.C.; HIROTA, M.M.; BEDÊ, L.C. Desafios e oportunidades para a conservação da biodiversidade na Mata Atlântica brasileira. Megadiversidade, v. 1, n.1, p. 132-138, 2005. https://doi.org/10.1016/j.biocon.2010.02.005
TAVAREZ, H.; ELBAKIDZE, L. Urban forests valuation and environmental disposition: the case of Puerto Rico. Forest Policy and Economics, v.131, 2021. https://doi.org/10.1016/j.forpol.2021.102572
THE EUROPEAN SPACE AGENCY (União Europeia). Sentinel Online. 2021. Available: https://sentinel.esa.int/web/sentinel/home. Access on: 04 oct. 2021.
UNITED NATIONS. Department of Economic and Social Affairs. Population Division World urbanization prospects: The 2018 revision (ST/ESA/SER.A/420), United Nations, 2019.
UNITED NATIONS. E/2018/25-E/CN.9/2018/7. Commission on Population and Development, Report on the fifty-first session, Economic and Social Council. 2018. Available: https://digitallibrary.un.org/record/1626675/files/E_2018_25%26E_CN-9_2018_6-EN.pdf. Access on: sep. 2021.
WANG, M.; KRSTIKJ, A.; KOURA, H. Effects of urban planning on urban expansion control in Yinchuan city, western China. Habitat International, v.64, p. 85–97, 2017. https://doi.org/10.1016/j.habitatint.2017.04.008
WARD, J.S.; DUNCAN, J.S.; JARDEN, A.; STEWART, T. The impact of children’s exposure to greenspace on physical activity, cognitive development, emotional wellbeing, and ability to appraise risk. Health Place, v.40, p.44–50, 2016. https://doi.org/10.1016/j.healthplace.2016.04.015
WEY, W.; HSU, J. New urbanism and smart growth: Toward achieving a smart national Taipei university district. Habitat International, v.42, p. 164–174, 2014. https://doi.org/10.1016/j.habitatint.2013.12.001
WHO. Urban Green Spaces: a brief for action. WHO Regional Office for Europe Copenhagen. 2017.
WIDEGREN, O. The new environmental paradigm and personal norms. Environ. Behav. v. 30, n. 1, p. 75–100, 1998. https://doi.org/10.1177/0013916598301004
WOLFF, S.; SCHULP, C.; VERBURG, P. Mapping ecosystem services demand: A review of current research and future perspectives. Ecological Indicators, v.55, p. 159–171, 2015. https://doi.org/10.1016/j.ecolind.2015.03.016
WU, Y.G. Sponge City Design. Phoenix Science Press, Nanjing, p. 88, 2016.
ZANG, B.; LV, P.; WARREN, C. M. J. Housing prices, rural-urban migrants settlement decisions and their regional differences in China. Habitat International, v.50, p. 149–159, 2015. https://doi.org/10.1016/j.habitatint.2015.08.003
ZHU, X.; GAO, M.; ZHANG, R.; ZHANG, B. Quantifying emotional differences in urban green spaces extracted from photos on social networking sites: A study of 34 parks in three cities in northern China. Urban For. Urban Green., v.62, 2021. https://doi.org/10.1016/j.ufug.2021.127133
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Maycon Jorge Farinha, André Geraldo Berezuk, Luciana Bernardo, Adelsom Soares Filho