Spatial-Temporal Dynamics of Forests in Brazil – Period from 1985 to 2022
PDF-en

Keywords

Natural forests
Planted forests
Silviculture

How to Cite

LEITE, Daiany Stéfani Martins Vieira; BERNARDO, Luciana; FARINHA, Maycon Jorge Ulisses Saraiva. Spatial-Temporal Dynamics of Forests in Brazil – Period from 1985 to 2022. Sociedade & Natureza, [S. l.], v. 37, n. 1, 2025. DOI: 10.14393/SN-v37-2025-76340. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/76340. Acesso em: 14 jul. 2025.

Abstract

This study aims to analyze the spatial-temporal changes in Natural and Planted Forests in Brazil. To achieve this, data provided by MapBiomas was used to examine the development of Brazilian forests between 1985 and 2022. The forests were categorized as either Natural or Planted, highlighting their differences. Natural Forests are characterized by their role in preserving Brazil's biodiversity, while Planted Forests are cultivated primarily for commercial purposes. The data was analyzed using percentage variation and further examined through a paired T-test, the test was used to identify the existence of statistically significant differences between the years of analysis and Location Quotient analysis. The results indicate a positive trend in the growth of Planted Forests, while areas of Natural Forests have decreased across the country. Regarding the T-Test, the results indicated that, on average, the areas of Natural Forests in the Cerrado, Caatinga, Amazon and Atlantic Forest biomes are smaller in 2022 compared to the areas observed for these biomes in 1985. Furthermore, regarding the comparisons of the areas, the test indicated that Planted Forests, on average, in the Cerrado, Amazon, Atlantic Forest, Caatinga and Pampa biomes, are larger in 2022 than the areas observed in these biomes in 1985. Thus, we have a reduction in areas of natural forests in most Brazilian biomes, as well as an increase in areas of planted forests in the same biomes, added to the Pampa biome. 

PDF-en

References

ABREU, R. C. L.; LEMOS, F. K. Brazilian agriculture and the global environmental

agenda. In: SØNDERGAARD, N., SÁ, C. D., BARROS-PLATIAU, A. F. (Eds.), Sustainability Challenges of Brazilian Agriculture, Environment & Policy, v. 64. Springer, New York, p. 85–105, 2023. https://doi.org/10.1007/978-3-031-29853-0_5

AFUYE, G. A.; KALUMBA, A. M.; ISHOLA, K. A.; ORIMOLOYE, I. R. Long-term dynamics and response to climate change of different vegetation types using GIMMS NDVI3g data over amathole district in South Africa. Atmosphere, v. 13, n. 4, p. 620. 2022. https://doi.org/10.3390/atmos13040620

ASSAD, E. D.; CORDEIRO, L. A. M.; MARCHÃO, R. L.; ALMEIDA, R. G.; GUIMARÃES JÚNIOR, R.; BERNDT, A.; SALTON, J. C.; EVANGELISTA, B. A. Potencial de mitigação da emissão de gases de efeito estufa por meio da adoção da estratégia de integração lavoura-pecuária-floresta. Embrapa Gado de Corte-Capítulo em livro científico (ALICE). 2015. Available: https://www.alice.cnptia.embrapa.br/bitstream/doc/1023603/1/9000033ebookpdf.pdf. Accessed on: may 2025.

BABBAR, D.; AREENDRAN, G.; SAHANA, M.; SARMA, K.; RAJ, K., SIVADAS, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, v. 278. 2021. https://doi.org/10.1016/j. jclepro.2020.123333

BANCO CENTRAL DO BRASIL. Atividade Econômica. 2023. Available: https://www.bcb.gov.br/content/publicacoes/boletimregional/202312/br202312c1p.pdf. Accessed on: may 2025.

BARBOZA, A.C.G.; TAGLIACOLLO, V.; JACOBUCCI, G.B. Influence of seasonal hydrological regimes on benthic macroinvertebrates in two the Brazilian biodiversity hotspots. Limnologica, v. 106. 2024. https://doi.org/10.1016/j.limno.2024.126170

BARROS, F.D.V.; LEWIS, K., ROBERTSON, A.D.; PENNINGTON, R.T.; HILL, T.C.; MATTHEWS, C.; LIRA-MARTINS, D.; MAZZOCHINI, G.G.; OLIVEIRA, R.S.; ROWLAND, L. Cost-effective restoration for carbon sequestration across Brazil’s biomes. Science of The Total Environment, v. 876. 2023. https://doi.org/10.1016/j.scitotenv.2023.162600

BARROS, T. D. Silvicultura. Embrapa. 2021. Available: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/agroenergia/florestal/silvicultura. Accessed on: may 2025.

BROADBENT, E. N.; ZAMBRANO, A. M. A.; DIRZO, R., DURHAM, W. H.; DRISCOLL, L.; GALLAGHER, P.; RANDOLPH, S. G. The effect of land use change and ecotourism on biodiversity: a case study of Manuel Antonio, Costa Rica, from 1985 to 2008. Landscape Ecology, v. 27, p. 731–744. 2021. https://doi.org/10.1007/s10980-012-9722-7

CAMPOS, E. F. D.; PUNHAGUI, K. R. G.; JOHN, V.M. CO2 footprint of Amazon lumber: a meta-analysis. Resources Conservation Recycling. v. 167. 2021. https://doi.org/ 10.1016/j.resconrec.2020.105380

CARVALHO, P. C. F; MORAES, A; PONTES, L. S; ANGHINONI, I; SULE, R. M; BATELLO, C. (Special). Definições e terminologias para Sistema Integrado de Produção Agropecuária. Revista Ciência Agronômica, v. 45, n. 5 (Especial), p. 1040-1046. 2014. https://doi.org/10.1590/S1806-66902014000500020

CHANG, X.; XING, Y.; WANG, J.; YANG, H.; GONG. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resources Conservation Recycling. 182, 106333. 2022. https://doi.org/10.1016/j.resconrec.2022.106333

CHENG, K.; YANG, H.; GUAN, H.; REN, Y.; CHEN, Y.; CHEN, M.; YANG, Z.; LIN, D.; LIU, W.; XU, J.; XU, G.; MA, K.; GUO, Q. Unveiling China’s natural and planted forest spatial–temporal dynamics from 1990 to 2020. ISPRS Journal of Photogrammetry and Remote Sensing, v. 209, p. 37–50. 2024. https://doi.org/10.1016/j.isprsjprs.2024.01.024

COLLIER, K.J.; CLAPCOTT, J.E.; HAMER, M.P.; YOUNG, R.G. Extent estimates and land cover relationships for functional indicators in non-wadeable rivers. Ecological Indicators. v. 34, p. 53–59. 2013. https://doi.org/10.1016/j.ecolind.2013.04.010

COLOMBO, A.F.; JOLY, C.A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Brazilian Journal of Biology. v. 70, p. 697–708. 2010. https://doi.org/10.1590/S1519- 69842010000400002

CRIPPA, M.; SOLAZZO, E.; GUIZZARDI, D.; MONFORTI-FERRARIO, F.; TUBIELLO, F.N.; LEIP, A.J.N.F. Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food v. 2, n. 3, p. 198–209, 2021. https://doi.org/10.1038/s43016-021- 00225-9

CAMPOLI, J. S; STIVALI, M. Custo social do desmatamento nos biomas brasileiro. IPEA. 2023. https://doi.org/10.38116/td2842

DA CUNHA, E.R.; SANTOS, C.A.G.; DA SILVA, R.M.; PANACHUKI, E, DE OLIVEIRA, P.T.S.; DE SOUZA OLIVEIRA, N.; DOS SANTOS FALCÃO, K. Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil) Science of The Total Environment, v. 818. 2022. https://doi.org/10.1016/j.scitotenv.2021.151811

DIAS, F.; SUHADOINIK, N.; CAMARGO, H.; DA SILVA, S. Predicting the pulse of the Amazon: Machine learning insights into deforestation dynamics. Journal of Environmental Management, 362, 2024. https://doi.org/10.1016/j.jenvman.2024.121359

EMBRAPA. Crescimento das exportações brasileiras e atendimento a novos mercados. 2021. Available: https://www.embrapa.br/visao-de-futuro/intensificacao-tecnologica-e-concentracao-da-producao/sinal-e-tendencia/crescimento-das-exportacoes-brasileiras-e-atendimento-a-novos-mercados. Accessed on: may 2025.

EMBRAPA. Silvicultura. 2021. Available: https://www.embrapa.br/agencia-de-informacao-tecnologica/tematicas/agroenergia/florestal/silvicultura#:~:text=A%20palavra%20silvicultura%20prov%C3%A9m%20do,atender%20%C3%A0s%20exig%C3%AAncias%20do%20mercado. Accessed on: apr. 2024.

FAO - Food and Agriculture Organization. Global Forest Resources Assessment. 2020. Available: https://www.fao.org/documents/card/en/c/ca9825en. Accessed on: may 2025.

FEBRATEX. Indústria têxtil: entenda as oportunidades do setor. 2020 Available: https://fcem.com.br/noticias/industria-textil-entenda-as-oportunidades-do-setor/. Accessed on: jun. 2024.

FRANÇOSO, R.D.; BRANDÃO, R.; NOGUEIRA, C.C.; SALMONA, Y.B., MACHADO, R.B.; COLLI, G.R. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Natureza e Conservação, v. 13, p. 35–40, 2015. http://doi.org/10.1016/j. ncon.2015.04.001

IBÁ - Indústria Brasileira de Árvores. Relatório de 2020. 2020. Available: https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf. Accessed on: may 2025.

IBGE. Valor de produção da silvicultura e da extração vegetal cresce 27,1% e chega ao recorde de R$ 30,1 bilhões. 2022. Available: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/35056-valor-de-producao-da-silvicultura-e-da-extracao-vegetal-cresce-27-1-e-chega-ao-recorde-de-r-30-1-bilhoes. Accessed on: jun. 2024.

IBGE. Cidades e Estados do Brasil. 2024. Available: https://cidades.ibge.gov.br/. Accessed on: jun. 2024.

IBGE. (2020). Monitoramento da cobertura e uso da terra do brasil 2016 – 2018. Available: https://www.ibge.gov.br/apps/monitoramento_cobertura_uso_terra/v1/pdf/Relatorio_MONITORAMENTO_16_18.pdf. Accessed on: apr. 2024.

IBÁ. Indústria Brasileira de Árvores. Relatório IBÁ 2019 – Ano Base 2018. São Paulo: IBÁ, 80p. 2019.

JOHN, M. Carbon-negative biofuels. The Energy Policy. v. 36, p. 940–945. 2008. https://doi.org/10.1016/j.enpol.2007.11.029

JUNIOR, J. C. S; ROCHA, L. L; OLIVEIRA, O. A. M; PEIXOTO, R. M; SILVA, R. M; ROCHA, F. R. T; BUENO, C. P; GIONGO, P. R; KLEIN, J. L. Sistemas Integrados de Produção Agropecuária: análise descritiva das ações desenvolvidas por instituições governamentais no Estado de Goiás. Research, Society and Development, v. 10, n. 11, e228101119414. 2021. https://doi.org/10.33448/rsd-v10i11.19414

KARINA, K.; RICHARD, F.; MARK, R.; MARTIN, H. Global land use changes are four times greater than previously estimated. Nature Communications. 12, 2501. 2021. https://doi.org/10.1038/s41467-021-22702-2

LIANG, Y.; HASHIMOTO, S.; LIU, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecological Indicators, v. 120, 106939. 2021. https://doi.org/10.1016/j.ecolind.2020.106939

LUYSSAERT, S.; SCHULZE, E.; BORNER, A.; KNOHL, A.; HESSENMOLLER, D.; LAW, B.; CIAIS, P.; GRACE, J. Old-growth forests as global carbon sinks. Nature, v. 455, p. 213–215. 2008. https://doi.org/10.1038/nature07276

MMA – Ministério Do Meio Ambiente. Florestas. 2024. Available: https://antigo.mma.gov.br/florestas.html#:~:text=As%20florestas%20brasileiras%20desempenham%20importantes,do%20Meio%20Ambiente%20(MMA). Accessed on: jun. 2024.

MPANYARO, Z.; KALUMBA, A.M.; ZHOU, L.; AFUYE, G.A. Mapping and Assessing Riparian Vegetation Response to Drought along the Buffalo River Catchment in the Eastern Cape Province. South Africa. Climate, v. 12, n. 1, p. 7. 2024. https://doi.org/10.3390/cli12010007

MAPBIOMAS. Mapeamento anual de cobertura e uso da terra no Brasil entre 1985 a 2022. 2024a. Available: https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2023/08/FACT_MapBiomas_Mapeamento-Anual-Cobertura_Colecao8_31.pdf. Accessed on: apr. 2024.

MAPBIOMAS. Descrição da Legenda Coleção 8. 2024b. Available: https://brasil.mapbiomas.org/wp-content/uploads/sites/4/2023/08/Legenda-Colecao-8-Descricao-Detalhada-PDF-PT-2.pdf. Accessed on: jul. 2024.

MAPBIOMAS. Em 38 anos o Brasil perdeu 15% de suas florestas naturais. 2023. Available: https://brasil.mapbiomas.org/2023/10/20/em-38-anos-o-brasil-perdeu-15-de-suas-florestas-naturais/#:~:text=Os%20estados%20com%20maior%20propor%C3%A7%C3%A3o,(47%20milh%C3%B5es%20de%20hectares). Accessed on: jul. 2023.

MEIRA, R. B; CARELLI, M. N. Notas Sobre Florestas no Brasil da Primeira República: Silvicultura, Preservação da Natureza e Agricultura. Fronteiras: Journal of Social, Technological and Environmental Science, v. 4, n. 1, jan. - jul, p. 301-312. 2015. https://doi.org/10.21664/2238-8869.2015v4i1.p301-312

MYERS, N.; MITTERMELER, R.A.; MITTERMELER, C.G.G.; DA FONSECA, G.A.B.B.; KENT, J. Biodiversity hotspots for conservation priorities. Nature, v. 403, p. 853–858. 2000. https://doi. org/10.1038/35002501

NATH, A.; KOLEY, B.; CHOUDHURY, T.; SARASWATI, S.; RAY, B.C.; UM, J.S.; SHARMA, A. Assessing Coastal Land Use and Land-cover Change Dynamics Using Geospatial Techniques. Sustainability, v. 15, n. 9, p. 7398. 2023. https://doi.org/10.3390/su15097398

NUMAZAWA, C.T.D.; NUMAZAWA, S.; PACCA, S.; JOHN, V.M. Logging residues and CO2 of Brazilian Amazon timber: two case studies of forest harvesting, Resources Conservation and Recycling. v. 122, p. 280–285. 2017. https://doi.org/10.1016/j.resconrec.2017.02.016

OLIVEIRA, Y. M. M. de; GARRASTAZU, M. C.; ROSOT, M. A. D.; LUZ, N. B.; SCHAITZA, E. G. Plantações florestais comerciais no contexto da paisagem. In: Oliveira, Y. M. M. de; Oliveira, E. B. de (Ed.). Plantações florestais: geração de benefícios com baixo impacto ambiental. Brasília, DF: Embrapa. 2017b.

OLIVEIRA, Y. M. M; OLIVEIRA, E. B. As florestas plantadas e sua importância no contexto econômico e socioambiental do Brasil. Anais. 4° Encontro Brasileiro de Silvicultura 9 e 10 de abril de 2018-Ribeirão Preto, SP, Brasil. 2018. Available: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1092385/1/2018AACYedaEBSAsFlorestas.pdf . Accessed on: jul. 2024.

PEIXOTO, A.L. LUZ, J.R.P.; DE BRITO, M.A. Conhecendo a Biodiversidade. Brasília: MCTIC, CNPq, PPBio. 2016.

PENA-VERGANA, G.; CASTRO, L.R.; GASPARETTO, C.A.; BIZZO, W.A. Energy from planted forest and its residues characterization in Brazil. Energy, 239. 2022. https://doi.org/10.1016/j.energy.2021.122243

RIBEIRO, M.C.; MARTENSEN, A.C.; METZGER, J.P.; TABARELLI, M.; SCARANO, F.; FORTIN, M.J. The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. Biodiversity Hotspots. p. 405–434. 2011. https://doi.org/10.1007/978- 3-642-20992-5_21

SANGUINET, E.R.; Azzoni, C.R. Carbon emissions drivers in Brazilian regional production chains: Value-added and consumption-based approaches. Regional Science Policy & Practice, v. 16 n. 8. 2024. https://doi.org/10.1016/j.rspp.2024.100015

SCHIRPKE, U.; TASSER, E.; BORSKY, S.; BRAUN, M.; EITZINGER, J.; GAUBE, V.; GETZNER, M., GLATZEL, S.; GSCHWANTNER, T.; KIRCHNER, M. Past and future impacts of land-use changes on ecosystem services in Austria. Journal of Environmental Management. 345, 118728. 2023. https://doi.org/10.1016/j.jenvman.2023.118728

SIMIONI, F. J; MOREIRA, J. M. M. A. P; FACHINELLO, A. L; BUSCHINELLI, C. C. A; MATSUURA, M. I. S. F. Evolução e concentração da produção de lenha e carvão vegetal da silvicultura no Brasil. Ciência Florestal, Santa Maria, v. 27, n. 2, p. 731-742, apr. - jun. 2017. https://doi.org/10.5902/1980509827758

SNIF - Sistema Nacional De Informações Florestais. Florestas plantadas. 2019. Available: https://snif.florestal.gov.br/pt-br/florestas-plantadas. Accessed on: jun. 2024.

SENAR. Sistema ILPF: entenda cada um dos seus componentes. 2023. Available: https://ead.senargo.org.br/blog/sistema-ilpf-entenda-cada-um-dos-seus-componentes#:~:text=Um%20sistema%20de%20ILPF%20favorece,quanto%20para%20a%20propriedade%20rural.&text=Se%20voc%C3%AA%20quer%20mergulhar%20nos,Introdu%C3%A7%C3%A3o%20aos%20sistemas%20de%20ILPF. Accessed on: jun. 2024.

STATE OF RONDÔNIA. Rondônia é o terceiro maior produtor de grãos da Região Norte. 2021. Available: https://rondonia.ro.gov.br/rondonia-e-o-terceiro-maior-produtor-de-graos-da-regiao-norte/. Accessed on: jun. 2024.

TEIXEIRA, G.; RODRIGUES, G.S.S.C. Trajetória Geográfica da Silvicultura em Minas Gerais. Mercator, 20. 2021. https://doi.org/10.4215/rm2021.e20004

TEODORO, P.E.; ROSSI, F.S.; TEODORO, L.P.R.; SANTANA, D.C.; RATKE, R.F.; DE OLIVEIRA, I.C.; SILVA, J.L.D.; OLIVEIRA, J.L.G.; SILVA, N.P.; BAIO, F.H.R.; TORRES, F.E.; DA SILVA JUNIOR, C. A. Soil CO2 emissions under different land-use managements in Mato Grosso do Sul, Brazil. Journal of Cleaner Production. 434, 2024. https://doi.org/10.1016/j. jclepro.139983

UN. Como alimentar 10 bilhões de pessoas até 2050. 2020. Available: https://www.unep.org/pt-br/noticias-e-reportagens/reportagem/como-alimentar-10-bilhoes-de-pessoas-ate-2050. Accessed on: apr. 2024.

WANG, X.; ZHENG, H.; AHN, K.; ZHANG, X.W.; DESHPANDE, S.R.; SOTO, C.; PENG, H. Trade for food security: the stability of global agricultural trade networks. IFAC-PapersOnLine, v. 56 n. 3, p. 271-276. 2023. https://doi.org/10.1016/j.ifacol.2023.12.036

WANG, Z.; LI, X.; MAO, Y.; LI, L.; WANG, X.; LIN, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: a case study of Bortala, China. Ecological Indicators. 134, 108499. 2022. https://doi.org/ 10.1016/j.ecolind.2021.108499

ZHAO, M.; HE, Z., DU, J.; CHEN, L.; LIN, P.; FANG, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecological Indicators. v. 98, p. 29–38. 2019. https://doi.org/10.1016/j.ecolind.2018.10.052

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Daiany Stéfani Martins Vieira Leite, Luciana Bernardo, Maycon Jorge Ulisses Saraiva Farinha

Downloads

Download data is not yet available.