ASSESSMENT OF A MULTI-SENSOR APPROACH FOR NOISE REMOVAL ON LANDSAT-8 OLI TIME SERIES USING CBERS-4 MUX DATA TO IMPROVE CROP CLASSIFICATION BASED ON PHENOLOGICAL FEATURES

Main Article Content

Hugo do Nascimento Bendini
Leila Maria Garcia Fonseca
Thales Sehn Körting
Rennan de Freitas Bezerra Marujo
Ieda Del'Arco Sanches
Jeferson de Souza Arcanjo

Abstract

In this work we investigated a method for noise removal on Landsat-8 OLI time series using CBERS-4 MUX data to improve crop classiï¬ cation. An algorithm was built to look to the nearest MUX image for each Landsat image, based on an user deï¬ ned time span. The algorithm checks for cloud contaminated pixels on the Landsat time series using Fmask and replaces the contaminated pixels to build the integrated time series (Landsat-8 OLI + CBERS-4 MUX). Phenological features were extracted from the time series samples for each method (EVI and NDVI original time series and multi sensor time series, with and without ï¬ ltering) and subjected to data mining using Random Forest classiï¬ cation. In general, we observed a slight increase in the classiï¬ cation accuracy when using the proposed method. The best result was observed with the EVI integrated ï¬ ltered time series (78%), followed by the ï¬ ltered Landsat EVI time series (76%).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
BENDINI, H. do N.; FONSECA, L. M. G.; KÖRTING, T. S.; MARUJO, R. de F. B.; SANCHES, I. D.; ARCANJO, J. de S. ASSESSMENT OF A MULTI-SENSOR APPROACH FOR NOISE REMOVAL ON LANDSAT-8 OLI TIME SERIES USING CBERS-4 MUX DATA TO IMPROVE CROP CLASSIFICATION BASED ON PHENOLOGICAL FEATURES. Brazilian Journal of Cartography, [S. l.], v. 69, n. 5, 2017. DOI: 10.14393/rbcv69n5-44007. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/44007. Acesso em: 25 nov. 2024.
Section
Artigos
Author Biographies

Hugo do Nascimento Bendini, Instituto Nacional de Pesquisas Espaciais (INPE)

Doutorando em Sensoriamento Remoto na Divisão de Processamento de Imagens (DPI)

Leila Maria Garcia Fonseca, Instituto Nacional de Pesquisas Espaciais (INPE)

Pesquisadora na Divisão de Processamento de Imagens (DPI) e Chefe da Coordenação de Observação da Terra

Thales Sehn Körting, Instituto Nacional de Pesquisas Espaciais (INPE)

Pesquisador na Divisão de Processamento de Imagens (DPI)

Rennan de Freitas Bezerra Marujo, Instituto Nacional de Pesquisas Espaciais (INPE)

Doutorando em Computação Aplicada na Divisão de Processamento de Imagens (DPI)

Ieda Del'Arco Sanches, Instituto Nacional de Pesquisas Espaciais (INPE)

Pesquisadora na Divisão de Sensoriamento Remoto (DSR)

Jeferson de Souza Arcanjo, Instituto Nacional de Pesquisas Espaciais (INPE)

Analista de Sistemas na Divisão de Processamento de Imagens

Most read articles by the same author(s)

<< < 1 2 3 > >>