A Computational Tool for Geometric Characterization of Pores and Fractures in Microtomography Rock Images

Conteúdo do artigo principal

Letı́cia da Silva Bomfim
https://orcid.org/0000-0002-7675-7937
Guilherme Daniel Avansi
Alexandre Campane Vidal
Helio Pedrini
https://orcid.org/0000-0003-0125-630X

Resumo

Pores and fractures are important structures for the study and characterization of fluid flow inside rocks. It is through them that there can be the propagation and conduction of fluids and chemical substances inside the reservoirs, since the connections between these spaces provide the existence of flow. To understand the behavior of these structures, we have developed a computational tool that, through the use of high resolution images derived from computed microtomography, aims to detect and characterize the geometry of pores and faults with the objective of being an environment that allows the detailed understanding of these structures. For this task, image processing techniques were applied to identify the structure of the contours, obtained through data segmentation, and to evaluate their geometric parameters in conjunction with the algorithms implemented in this work. With this, we seek to provide a tool capable of assisting in the characterization of reservoirs and fluid analysis, and to reduce the uncertainties found in manual work through a computational approach, prioritizing the preservation of important samples collected in the field.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Detalhes do artigo

Como Citar
BOMFIM, L. da S.; AVANSI, G. D.; VIDAL, A. C.; PEDRINI, H. A Computational Tool for Geometric Characterization of Pores and Fractures in Microtomography Rock Images. Revista Brasileira de Cartografia, [S. l.], v. 75, 2023. DOI: 10.14393/rbcv75n0a-68352. Disponível em: https://seer.ufu.br/index.php/revistabrasileiracartografia/article/view/68352. Acesso em: 15 jul. 2024.
Seção
Seção Especial "Brazilian Symposium on GeoInformatics - GEOINFO 2023"

Referências

ANSELMETTI, F.S.; LUTHI, S.; EBERLI, G.P. Quantitative Characterization of Carbonate Pore Systems by Digital Image Analysis. American Association of Petroleum Geologists (AAPG) Bulletin, American Association of Petroleum Geologists, v. 82, n. 10, p. 1815–1836, 1998.

ARCHIE, G.E. Classification of Carbonate Reservoir Rocks and Petrophysical Considerations. American Association of Petroleum Geologists (AAPG) Bulletin, American Association of Petroleum Geologists, v. 36, n. 2, p. 278–298, 1952.

BASAN, P.B.; LOWDEN, B.D.; WHATTLER, P.R.; ATTARD, J.J. Pore-Size Data in Petrophysics: A Perspective on the Measurement of Pore Geometry. Geological Society, London, Special Publications, Geological Society of London, v. 122, n. 1, p. 47–67, 1997.

BEUCHER, S.; MEYER, F. The Morphological Approach to Segmentation: The Watershed Transformation. Mathematical Morphology in Image Processing, CRC Press, p. 433–481, 2018.

BOMFIM, L.S.; PEDRINI, H. Characterization of Fracture Geometry with Computed Microtomography Rock Images. XXIII Brazilian Symposium on GeoInformatics (GeoInfo), São José dos Campos, Brazil, p. 111–122, nov. 2022.

BULTREYS, T. Estaillades Carbonate #2. National Science Foundation: Digital Rocks Portal, 2016. http://www.digitalrocksportal.org/projects/58.

BULTREYS, T.; STAPPEN, J.;KOCK, T.;BOEVER,W.;BOONE, M.A.; HOOREBEKE, L.;CNUDDE, V. Investigating the Relative Permeability Behavior of Microporosity-Rich Carbonates and Tight Sandstones with Multiscale Pore Network Models. Journal of Geophysical Research: Solid Earth, Wiley Online Library, v. 121, n. 11, p. 7929–7945, 2016.

CNUDDE, V.; BOONE, M.N. High-resolution X-Ray Computed Tomography in Geosciences: A Review of the Current Technology and Applications. Earth-Science Reviews, Elsevier, v. 123, p. 1–17, 2013.

COUNCIL, National Research. Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. Washington, DC, USA: National Academies Press, 1996. P. 568.

DENG, H.; FITTS, J.P.; PETERS, C.A. Quantifying Fracture Geometry with X-ray Tomography: Technique of Iterative Local Thresholding (TILT) for 3D Image Segmentation. Computational Geosciences, Springer, v. 20, n. 1, p. 231–244, 2016.

DONG, H.; FJELDSTAD, S.; ALBERTS, L.; ROTH, S.; BAKKE, S.; ØREN, P. Pore Network Modelling on Carbonate: A Comparative Study of Different Micro-CT Network Extraction Methods. International Symposium of the Society of Core Analysts, Abu Dhabi, United

Arab Emirates, v. 29, p. 1–12, 2008.

ERTEKIN, T.; ABOU-KASSEM, J.H.; KING, G.R. Basic Applied Reservoir Simulation. Richardson, TX, USA: Society of Petroleum Engineers Richardson, 2001. v. 7.

GONZALEZ, R. C;WOODS, R.E. Digital Image Processing. Upper Saddle River, NJ, USA: Prentice Hall New Jersey, 2007.

HARDEBOL, N.J.; BERTOTTI, G. DigiFract: A Software and Data Model Implementation for Flexible Acquisition and Processing of Fracture Data from Outcrops. Computers & Geosciences, Elsevier, v. 54, p. 326–336, 2013.

HEALY, D.; RIZZO, R.E.; CORNWELL, D.G.; FARRELL, N.J.C.; WATKINS, H.; TIMMS, N.E.; GOMEZ-RIVAS, E.; SMITH, M. FracPaQ: A MATLAB Toolbox for the Quantification of Fracture Patterns. Journal of Structural Geology, Elsevier, v. 95, p. 1–16, 2017.

INTERSTATE TECHNOLOGY AND REGULATORY COUNCIL (ITRC). Characterization and Remediation in Fractured Rocks. Washington, DC, USA: Environmental Council of the States, 2020. https://fracturedrx-1.itrcweb.org/3-hydrology-fluid-flow/.

JING, L.; STEPHANSSON, O. Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications. Amsterdam, The Netherlands: Elsevier, 2007. v. 85.

LI, M.; MAGSIPOC, E.; ABDELAZIZ, A.; HA, J.; PETERSON, K.; GRASSELLI, G. Mapping Fracture Complexity of Fractured Shale in Laboratory: Three-Dimensional Reconstruction from Serial-Section Images. Rock Mechanics and Rock Engineering, Springer, v. 55, n. 5,

p. 2937–2948, 2022.

LI, W.; FRASH, L.P.; WELCH, N.J.; CAREY, W.J.; MENG, M.; WIGAND, M. Stress-Dependent Fracture Permeability Measurements and Implications for Shale Gas Production. Fuel, Elsevier, v. 290, p. 119984, 2021.

LUCIA, F.J.; KERANS, C.; JENNINGS, J.W. Carbonate Reservoir Characterization. Journal of Petroleum Technology, OnePetro, v. 55, n. 6, p. 70–72, 2003.

MACDONALD, D.A.; BARTKOWIAK, T.; MENDAK, M.; STEMP,W.J.; KEY, A.; DE LA TORRE, I.; WIECZOROWSKI, M. Revisiting Lithic Edge Characterization with MicroCT: Multiscale Study of Edge Curvature, Re-Entrant Features, and Profile Geometry on Olduvai Gorge Quartzite Flakes. Archaeological and Anthropological Sciences, Springer, v. 14, n. 2, p. 1–20, 2022.

MORAES, P.C.X. Determinação de Propriedades Petrofísicas e Geológicas utilizando uma Técnica de Análise Digital de Rochas. 2018. Diss. (Mestrado) – Faculdade de Engenharia Mecânica e Instituto de Geociências, Universidade Estadual de Campinas, Campinas-SP.

OPENCV. Open Source Computer Vision Library. OpenCV Team: GitHub, Inc., 2015. https://github.com/opencv/opencv.

ORTEGA, O.; MARRETT, R. Prediction of Macrofracture Properties using Microfracture Information, Mesaverde Group Sandstones, San Juan Basin, New Mexico. Journal of Structural Geology, Elsevier, v. 22, n. 5, p. 571–588, 2000.

OTSU, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, IEEE, v. 9, n. 1, p. 62–66, 1979.

PEDRINI, H. Multiresolution Terrain Modeling Based on Triangulated Irregular Networks. Revista Brasileira de Geociências, v. 31, n. 2, p. 117–122, jun. 2001.

PEDRINI, H.;SCHWARTZ,W.R. Análise de Imagens Digitais: Princípios, Algoritmos e Aplicações. São Paulo, SP, Brazil: Editora Thomson Learning, 2007.

PLASIS, A. Concrete Cracking. Stellenbosch, South Africa: Stellenbosch University, 2014. http://blogs.sun.ac.za/ctscanner/concrete-cracking/.

PURSWANI, P.; KARPYN, Z.T.; ENAB, K.; XUE, Y.; HUANG, X. Evaluation of Image Segmentation Techniques for Image-based Rock Property Estimation. Journal of Petroleum Science and Engineering, Elsevier, v. 195, p. 107890, 2020.

RAMANDI, H.L.; IRTZA, S.; SIROJAN, T.; NAMAN, A.; MATHEW, R.; SETHU, V.; ROSHAN, H. FracDetect: A Novel Algorithm for 3D Fracture Detection in Digital Fractured Rocks. Journal of Hydrology, Elsevier, v. 607, p. 127482, 2022.

SANTOS, A.; SCANAVINI, H.F.A.; PEDRINI, H.; SCHIOZER, D.J.; MUNERATO, F.P.; BARRETO, C.E.A.G. An Artificial Intelligence Method for Improving Upscaling in Complex Reservoirs. Journal of Petroleum Science and Engineering, v. 211, p. 110071, 2022.

SCHWARTZ, W.R.; PEDRINI. Textured Image Segmentation Based on Spatial Dependence Using a Markov Random Field Model. IEEE International Conference on Image Processing, Atlanta, GA, USA, v. 1, p. 2449–2452, out. 2006.

SHAFLOOT, T.A.; KIM, T.W.; KOVSCEK, A.R. Investigating Fracture Propagation Characteristics in Shale Using sc-CO2 and Water with the Aid of X-ray Computed Tomography. Journal of Natural Gas Science and Engineering, v. 92, p. 103736, 2021.

SINGHAL, B.; GUPTA, R. Applied Hydrogeology of Fractured Rocks. New York, NY, USA: Springer Science & Business Media, 2010. P. 408.

SOK, R.M.; KNACKSTEDT, M.A.; VARSLOT, T.; GHOUS, A.; LATHAM, S.; SHEPPARD, A.P. Pore Scale Characterization of Carbonates at Multiple Scales: Integration of Micro-CT, BSEM, and FIBSEM. Petrophysics, Society of Petrophysicists e Well-Log Analysts, v. 51, n. 6, 2010.

TANG, Y.B.; LI, M.; LI, X.F. Connectivity, Formation Factor and Permeability of 2D Fracture Network. Physica A: Statistical Mechanics and its Applications, Elsevier, v. 483, p. 319–329, 2017.

VAN DER WALT, S.; SCHÖNBERGER, J.L.; NUNEZ-IGLESIAS, J.; BOULOGNE, F.; WARNER, J.D.; YAGER, N.; GOUILLART, E.; YU, T. Scikit-Image: Image Processing in Python. PeerJ, PeerJ Inc., v. 2, e453, 2014.

VIRTANEN, P.; GOMMERS, R.; OLIPHANT, T.E.; HABERLAND, M.; REDDY, T.; COURNAPEAU, D.; BUROVSKI, E.; PETERSON, P.; WECKESSER, W.; BRIGHT, J.; WALT, S.J. van der; BRETT, M.; WILSON, J.; JARROD, K.; MAYOROV, N.; NELSON, A.R.J.; JONES, E.; KERN,

R.; LARSON, E.; CAREY, C.J.; POLAT, I.; FENG, Y; MOORE, E.W.; VAN DER PLAS, J.; LAXALDE, D.; PERKTOLD, J.; CIMRMAN, R.; HENRIKSEN, I.; QUINTERO, E.A.; HARRIS, C.R.; ARCHIBALD, A.M.; RIBEIRO, A.H.; PEDREGOSA, F.; VAN MULBREGT, P. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, v. 17, p. 261–272, 2020.

WIGGINS, R.H.; DAVIDSON, H.C.; HARNSBERGER, H.R.; LAUMAN, J.R.; GOEDE, P.A. Image File Formats: Past, Present, and Future. Radiographics, Radiological Society of North America, v. 21, n. 3, p. 789–798, 2001.

XIONG, F.; JIANG, Q.; XU, C. Fast Equivalent Micro-Scale Pipe Network Representation of Rock Fractures Obtained by Computed Tomography for Fluid Flow Simulations. Rock Mechanics and Rock Engineering, Springer, v. 54, n. 2, p. 937–953, 2021.

YANG, B.; WANG, H.; WANG, B.; SHEN, Z.; ZHENG, Y.; JIA, Z.; YAN, W. Digital Quantification of Fracture in Full-Scale Rock Using Micro-CT Images: A Fracturing Experiment With N2 and CO2. Journal of Petroleum Science and Engineering, v. 196, p. 107682, 2021.

ZHU, W.; KHIREVICH, S.; PATZEK, T.W. Impact of Fracture Geometry and Topology on the Connectivity and Flow Properties of Stochastic Fracture Networks.Water Resources Research, Wiley Online Library, v. 57, n. 7, p. 1–15, 2021.