Abstract
The urban environment is often responsible for negative impacts on the climate and environmental comfort, due to the common climatic interference in highly built and waterproofed environments. One of the ways of mitigating negative environmental and microclimate impacts is the use of green areas in the urban environment. Thus, aiming at the analysis of environmental quality parameters of urban regions, it is essential to monitor the influence of green areas on different meteorological variables. In this sense, the use of information acquisition instruments and methodologies can positively contribute to this analysis, which can support decision-making related to urban planning. Thus, this work aims to develop a sensor network with sensor nodes to assess meteorological variables in urban green areas, aiming to analyze and discuss the influence of green areas on the behavior of CO¬2 concentration, temperature and air relative humidity parameters in an urban environment. The proposed and developed sensor nodes enabled the adequate collection of these variables and, based on the results obtained, it was possible to observe that the green area (permanent preservation area - PPA) contributed positively to these variables in the portion of the study area located in Campinas (SP), presenting lower temperature and CO2 concentration and increased air humidity. However, for the portion of Paulínia (SP), it was possible to observe little influence from the PPA. Influences on these variables, exerted by rural areas and parks, were also identified, contributing to the reduction of meteorological parameters, but different interactions were identified with the CO2 concentration, which may present a possible increase or assist in the reduction of CO2 in the air.
References
AMBRIZZI, T., ARAUJO, M., Base científica das mudanças climáticas: Contribuição do grupo de trabalho 1 do painel brasileiro de mudanças climáticas ao primeiro relatório da avaliação nacional sobre mudanças climáticas. PBMC, COPPE. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, 464 pp. 2014.
ALONZO, M. MCFADDEN, J. P.; NOWAK, D. J; ROBERTS, D. A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban Forestry & Urban Greening, v. 17, p. 135-147, June 2016. https://doi.org/10.1016/j.ufug.2016.04.003
AOOSONG ELECTRONICS. Digital-output relative humidity & temperature sensor/module: DHT22 (DHT22 also named as AM2302). Available in: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf. Access on: May, 2nd, 2019.
BOWLER, D. E.; BUYUNG-ALI, L.; KNIGHT T. M.; PULLIN, A. S. Urban greening to cool towns and cities: a systematic review of the empirical evidence.: A systematic review of the empirical evidence. Landscape and Urban Planning, [s.l.], v. 97, n. 3, p. 147-155, Elsevier BV. September 2010. https://doi.org/10.1016/j.landurbplan.2010.05.006
BRASIL. Resolução CONAMA nº 369, de 28 de março de 2006. Dispõe sobre os casos excepcionais, de utilidade pública, interesse social ou baixo impacto ambiental, que possibilitam a intervenção ou supressão de vegetação em Área de Preservação Permanente-APP. Brasília. Diário Oficial da União, March, 29th 2006.
BRINDLEY, P. CAMERON, R.W.; ERSOY, E.; JORGENSEN, A.; MAHESWARAN, R. Is more always better? Exploring field survey and social media indicators of quality of urban greenspace, in relation to health. Urban Forestry & Urban Greening, v. 39, p. 45-54, March 2019. http://dx.doi.org/10.1016/j.ufug.2019.01.015.
CAMPINAS. Lei complementar nº 189, de 08 de janeiro de 2018. Dispõe sobre o Plano Diretor Estratégico do município de Campinas. Prefeitura Municipal. Diário Oficial do Município January, 8th 2018.
CARMINATI, M. KANOUN, O.; ULLO, S. L.; MARCUCCIO, S. Prospects of Distributed Wireless Sensor Networks for Urban Environmental Monitoring. IEEE Aerospace and Electronic Systems Magazine, [S.L.], v. 34, n. 6, p. 44-52, 1 jun. 2019. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/maes.2019.2916294.
CASTALDO, V. L. PISELLO, A. L.; PIGLIAUTILE, I.; PISELLI, C.; COTANA, F. Microclimate and air quality investigation in historic hilly urban areas: experimental and numerical investigation in central italy: Experimental and numerical investigation in central Italy. Sustainable Cities and Society, [s.l.], v. 33, p. 27-44, ago. Elsevier BV, 2017. https://doi.org/10.1016/j.scs.2017.05.017
CHOAY, F. O Urbanismo: Utopias e Realidades, uma Antologia. 7ªed. São Paulo. Perspectiva, 2013.
DEBIAZI, P. R.; SOUZA, L. C. L. Contribuição de parâmetros do entorno urbano sobre o ambiente térmico de um campus universitário. Ambiente Construído, Porto Alegre, v. 17, n. 4, p. 215-232, October/ December 2017. https://doi.org/10.1590/s1678-86212017000400194
FOLEY, J.A. DEFRIES, R. ; ASNER, G. P. ; BARFORD. C. ;BONAN, G. ;CARPENTER, S. R. ; CHAPIN, F. S. ; COE, M. T. ;DAILY, G. T. ;GIBBS, H. K. ;HELKOWSKI, J. H. ;HOLLOWAY, T. ;HOWARD, E. A. ;KUCHARIK, C. J.; MONFREDA, C.; PATZ, J. A.; PRENTICE, I. C.; RAMANKUTTY, N.; PETER, SNYDER, P. K.; Global consequence of land use. Washington. Science, v. 309, p. 570-574,July, 22nd 2005. https://doi.org/10.1126/science.1111772
FRANCISCO, C. E. S. Áreas de Preservação Permanente na bacia do ribeirão das Anhumas: estabelecimento de prioridades para recuperação por meio de análise multicriterial, 2006. 108 f. Dissertação (Mestrado em Agricultura Tropical e Subtropical) - Pós-Graduação - IAC, Campinas, 2006.
HÄB, K.; RUBBELL, B. L.; A, MIDDEL. Sensor lag correction for mobile urban microclimate measurements. Urban Climate, [s.l.], v. 14, p. 622-635, December, 2015. https://doi.org/10.1016/j.uclim.2015.10.003
HOUGHTON, R. A.; HACKLER, J. L. Carbon Flux to the Atmosphere from Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990. ORNL/CDIAC-131, NDP-050/R1. Oak Ridge National Laboratory. Oak Ridge. 2001. https://doi.org/10.3334/CDIAC/lue.ndp050.2008
GRIMMOND, C. S. B.; OKE, T. R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. Journal of Applied Meteorology: American Meteorological Society, Vancouver, v. 38, p.1262-1292, September 1999. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
JACOMAZZI, M. A. Avaliação de cenários para elaboração de plano diretor de macrodrenagem urbana Estudo de caso: bacia do ribeirão das Anhumas em Campinas SP. 2015. 263f. Tese (Doutorado em Engenharia Civil). Universidade Estadual de Campinas. Campinas. 2015.
KONONOVA, M. M. Humus of virgin and cultivated soils. In J. E. Gieseking (Ed.), Soil components, v.1, p.110. p475-526, 1975. https://doi.org/10.1007/978-3-642-65915-7_8
LANDSBERG, H.E. The climate of towns. 1956 In: Thomas Jr., W.L. (Ed.), Man's Role in Changing the Face of the Earth. Univ. Chicago Press, Chicago, pp. 584-606.
LIU, L.; LIN, Y.; LIU, J.; WANG, L.; WAND, D.; SHUI, T.; CHEN, X.; WU, Q.; Analysis of local-scale urban heat island characteristics using an integrated method of mobile measurement and GIS-based spatial interpolation. Building and Environment, v. 117, p. 191-207, May 2017. https://doi.org/10.1016/j.buildenv.2017.03.013
MARTINS, M.E.G. Quartis. Revista de Ciência Elementar, [S.L.], v. 2, n. 4, p. 1-3, 30 dez. 2014. ICETA. http://dx.doi.org/10.24927/rce2014.268.
MOREIRA, P. S. P.; DALACORT, R.; GALVANIN, E. A. S.; NEVES, R. J.; CARVALHO, M. A. C.; BARBIERI, J. D. Ciclo diário de variáveis meteorológicas nos biomas do estado de mato grosso. Revista Brasileira de Climatologia, Tangará da Serra, v. 17, n. 1, p.173-188. 2015. https://doi.org/10.5380/abclima.v17i0.41159
NESBITT, L.; MEITNER, M. J.; GIRLING, C.; SHEPPARD, S. R. J.; LU, Y.Who has access to urban vegetation? A spatial analysis of distributional green equity in 10 US cities. Landscape and Urban Planning, v. 181, p. 51-79,January. 2019. https://doi.org/10.1016/j.landurbplan.2018.08.007
OKE, T. R. Instruments and Observing Methods Report: Initial guidance to obtain representative meteorological observations at urban sites. 81. ed. Canadá: World Meteorological Organization, 51 f. 2006.
PARALLAX. CO2 Gas Sensor Module (#27929). Available: https://www.jameco.com/Jameco/Products/ProdDS/2082898.pdf. Access on: May, 28th 2019.
PIOPPI, B.; PIGLIAUTILE, I.; PISELLO, A. L.Data collected by coupling fix and wearable sensors for addressing urban microclimate variability in an historical Italian city. Data In Brief, v. 29, p. 105322, abr. 2020. https://doi.org/10.1016/j.dib.2020.105322.
PULIAFITO, S. E.; BOCHACA, F. R.; ALLENDE, D. G.; FERNANDEZ, R. Green Areas and Microscale Thermal Comfort in Arid Environments: a case study in mendoza, argentina: A Case Study in Mendoza, Argentina. Atmospheric and Climate Sciences, [s.l.], v. 03, n. 03, p. 372-384, 2013. https://doi.org/10.4236/acs.2013.33039.
RASHID, B. REHMANI, M. H. Applications of wireless sensor networks for urban areas: a survey.: A survey. Journal Of Network And Computer Applications, [s.l.], v. 60, p. 192-219, jan. 2016. http://dx.doi.org/10.1016/j.jnca.2015.09.008
ROSEIRO, M. N. V.; TAKAYANAGUI, A. M. M. Meio ambiente e poluição atmosférica: O caso da cana-de-açucar. Saúde, Vol. 30 (1-2), p. 76-83, 2004.
SAMPAIO, G.; NOBRE, C.; COSTA, M. H.; SATYAMURTY, P.; SOARES-FILHO, B. S.; CARDOSO, M. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, [s.l.], v. 34, n. 17, p. 1-7, September, 13th 2007. American Geophysical Union (AGU). https://doi.org/10.1029/2007GL030612
SOEIRA, M. R. C. A relação entre o fator de visão do céu e a temperatura do ar em diferentes zonas climáticas locais. 2018. 115f. Dissertação (Mestrado em sistemas de Infraestrutura Urbana) - Programa de Pós-Graduação em Sistemas de Infraestrutura Urbana, Pontifícia Universidade Católica de Campinas, Campinas, 2018.
STEWART, I. D.; OKE, T. R. Local climate zones for urban temperature studies. Bulletin of American Meteorological Society, v. 93, n. 12, p. 1879-1900, 2012. https://doi.org/10.1175/BAMS-D-11-00019.1
TAVARES, R. L. M. Emissão de CO2 e atributos físicos, químicos e manejo microbiológicos do solo em sistemas de manejo de cana-de-açucar. Tese (Doutorado - Faculdade de Engenharia Agrícola). Universidade Estadual de Campinas. Campinas. 100p. 2014.
TUROLLA, A. MAURO, M. D.; MEZZERA, L.; ANTONELLI, M.; CARMINATI, M. Development of a Miniaturized and Selective Impedance Sensor for Real-Time Slime Monitoring in Pipes and Tanks. Sensors And Actuators B: Chemical, [S.L.], v. 281, n. 1, p. 288-295, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.snb.2018.10.107.
WMO. Guide to Climatological Practices - Volume I. Measurement of meteorological Variables. Secretariat of the World Meteorological Organization (WMO), Geneva, 8 ed. 2018.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2021 Jô Vinícius Barrozo Chaves, Lia Toledo Moreira Mota, Regina Márcia Longo, Admilson ´Írio Ribeiro, Daniel Braga Barros, José Ricardo Alves