A Triangulation Meta-Learning Framework for Imputing Missing Values in Weather Time Series
Main Article Content
Abstract
Machine learning and statistical methods can help model meteorological phenomena, especially in a context with many variables. However, it is not unusual that the measurement of those variables fails, generating data gaps and compromising data history analysis. The framework combines the predictions provided by three machine learning methods: decision trees, artificial neural networks and support vector machine, together with values calculated through five triangulation methods: arithmetic average, inverse distance weighted, optimized inverse distance weighted, optimized normal ratio and regional weight. Each machine learning algorithm generates eight regression models. One of the machine learning models makes predictions based only on the date. The remaining seven models make predictions based on one weather parameter (max. temperature, min. temperature, insolation, among others), in addition to the respective date. The triangulation methods use the climatic data from three neighboring cities to estimate the parameter of the target city. The generated dataset is, posteriorly, optimized by meta-learning algorithms. The results show that the additional information provided by the new machine learning models and the triangulation methods offered a significant increase in the accuracy of the imputed data. Moreover, the statistical analysis and coefficient of determination R² showed that the meta-learning model based on regression trees successfully combined the base-level outputs to generate outputs that best fill in the missing values of the time series studied in this paper.
Downloads
Metrics
Article Details
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors can enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) before and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see "The Effect of Open Access").