The relationship between epistemological beliefs and the performance of high school students in Physics investigative activity

Main Article Content

Gabrielle de Oliveira Almeida
Alessandro Damásio Trani Gomes

Abstract

This work aims to identify the relationship between students' epistemological conceptions and their performance in an investigative activity, carried out in pairs, through a computer simulation. The students' performance was evaluated according to a set of factors: the total number of experiments carried out, the exploration of the experimental field, the percentage of independent variables researched; and the quantity and/or percentage of valid and conclusive tests performed. 184 first-year high school students from a federal public school in Belo Horizonte participated in this quantitative research. The results suggest that, in general, students who have more sophisticated epistemological beliefs about the nature of science tend to present more appropriate strategies for controlling variables and experimentation. Based on the results obtained, educational implications are discussed and new research possibilities in the area are proposed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Almeida, G. de O., & Gomes, A. D. T. (2024). The relationship between epistemological beliefs and the performance of high school students in Physics investigative activity. Ensino Em Re-Vista, 31(Contínua), 1–25. https://doi.org/10.14393/ER-v31e2024-31
Section
DEMANDA CONTÍNUA

References

ALLCHIN, D. Evaluating knowledge of the nature of (whole) science. Science Education, v. 95, n. 3, p. 518-542, 2011. DOI: https://doi.org/10.1002/sce.20432.

ANPED. Ética e pesquisa em Educação: subsídios. Rio de Janeiro: ANPEd, 2019.

BARZILAI, S.; ZOHAR, A. Reconsidering personal epistemology as metacognition: A multifaceted approach to the analysis of epistemic thinking. Educational psychologist, v. 49, n. 1, p. 13-35, 2014. DOI: https://doi.org/10.1080/00461520.2013.863265.

CAREY, S. et al. An Experiment Is When You Try It and See if It Works": A Study of Junior High School Students' Understanding of the Construction of Scientific Knowledge. International Journal of Science Education, n. 11, p. 514–529, 1989. DOI: https://doi.org/10.1080/0950069890110504.

CAREY, S.; SMITH, C. On understanding the nature of scientific knowledge. Educational psychologist, v. 28, n. 3, p. 235-251, 1993. DOI: https://doi.org/10.1207/s15326985ep2803_4.

CARVALHO, A. M. P. Fundamentos teóricos e metodológicos do ensino por investigação. Revista Brasileira de Pesquisa em Educação em Ciências, p. 765-794, 2018. DOI: https://doi.org/10.28976/1984-2686rbpec2018183765.

DENG, F. et al. Students' views of the nature of science: A critical review of research. Science Education, v. 95, n. 6, p. 961-999, 2011. DOI: https://doi.org/10.1002/sce.20460.

DRIVER R. et al. Young people's images of science. McGraw-Hill Education (UK), 1996.

DUSCHL, R. A. Research on the history and philosophy of science. In: Gabel, D. L. Handbook of research on science teaching and learning. New York: Macmillan, 1994, p. 443-465.

EDMONDSON, K. M.; NOVAK, J. D. The interplay of scientific epistemological views, learning strategies, and attitudes of college students. Journal of research in Science Teaching, v. 30, n. 6, p. 547-559, 1993. DOI: https://doi.org/10.1002/tea.3660300604.

GOMES, A. D. T. Uma investigação sobre a aprendizagem dos conceitos de evidência no laboratório escolar. 2009. Tese (Doutorado em Educação) - Faculdade de Educação, Universidade Federal de Minas Gerais, Belo Horizonte.

HODSON, D. Toward a Philosophically More Valid Science Curriculum. Science education, v. 72, n. 1, p. 19-40, 1988. DOI: https://doi.org/10.1002/sce.3730720103.

HOGAN, K. Exploring a process view of students' knowledge about the nature of science. Science education, v. 84, n. 1, p. 51-70, 2000. DOI: https://doi.org/10.1002/(SICI)1098-237X(200001)84:1<51::AID-SCE5>3.0.CO;2-H.

KHISHFE, R. Improving students’ conceptions of nature of science: A review of the literature. Science & Education, p. 1-45, 2022. DOI: https://doi.org/10.1007/s11191-022-00390-8.

LEDERMAN, N. G.; ABD-EL-KHALICK, F.; LEDERMAN, J. S. Avoiding de-natured science: Integrating nature of science into science instruction. In: MCCOMAS, W. F. (Ed.), Nature of science in science instruction: Rationales and strategies. Cham: Springer Nature, 2020, p. 295-326.

LEDERMAN, N. G.; LEDERMAN, J. S. Research on teaching and learning of nature of science. In: LEDERMAN, N. G.; ABELL, S. K. (Eds.) Handbook of research on science education, volume II. Routledge, 2014. p. 614-634.

LEE, S. W. et al. Measuring epistemologies in science learning and teaching: A systematic review of the literature. Science Education, v. 105, n. 5, p. 880-907, 2021. DOI: https://doi.org/10.1002/sce.21663.

LIN, F. Characterizing elementary-school students’ epistemology of science: Science as collective theory-building process. The Asia-Pacific Education Researcher, v. 27, n. 6, p. 487-498, 2018. DOI: https://doi.org/10.1007/s40299-018-0411-4.

LIN, F.; ZHU, G.; CHAN, C. K. K. Do epistemically more sophisticated students always learn better than epistemically less sophisticated students in a constructivist learning context? Educational Psychology, v. 43, n. 6, p. 583-603, 2023. DOI: https://doi.org/10.1080/01443410.2023.2241685.

LIN, H. S.; CHIU, H. L. Student understanding of the nature of science and their problem-solving strategies. International Journal of Science Education, v. 26, n. 1, p. 101-112, 2004. DOI: https://doi.org/10.1080/0950069032000070289.

LISING, L.; ELBY, A. The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, v. 73, n. 4, p. 372-382, 2005. DOI: https://doi.org/10.1119/1.1848115.

MAINARDES, J.; CARVALHO, I. C. M. Autodeclaração de princípios e de procedimentos éticos na pesquisa em Educação. In Ética e pesquisa em educação: subsídios. Rio de Janeiro: ANPED, p. 129-132, 2019.

MANZ, E.; LEHRER, R.; SCHAUBLE, L. Rethinking the classroom science investigation. Journal of Research in Science Teaching, v. 57, n. 7, p. 1148-1174, 2020. DOI: https://doi.org/10.1002/tea.21625.

MATTHEWS, M. R. The Nature of Science and Science Teaching. In: FRASER, B. J.; TOBIN, K.G. (Eds). International Handbook of Science Education. Dordrecht: Kluwer Academic Publishers, 1998, p. 981-999.

MATTHEWS, M. R. Changing the focus: From nature of science (NOS) to features of science (FOS). In KHINE, M. S. (Ed.) Advances in nature of science research: Concepts and methodologies. Dordrecht: Springer, 2012, p. 3-26.

MCCOMAS, W. (Ed.). Nature of science in science instruction: Rationales and strategies. Cham: Springer Nature, 2020.

METE, P. The relationship between the epistemological beliefs, science learning approaches and scientific inquiry skills: a path analysis. Research in Science & Technological Education, p. 1-20, 2023. DOI: https://doi.org/10.1080/02635143.2023.2209845.

METZ, K. E. Disentangling robust developmental constraints from the instructionally mutable: Young children's epistemic reasoning about a study of their own design. The Journal of the Learning Sciences, v. 20, n. 1, p. 50-110, 2011. DOI: https://doi.org/10.1080/10508406.2011.529325.

MILLAR, R. et al. Investigating in the school science laboratory: conceptual and procedural knowledge and their influence on performance. Research Papers in Education, v. 9, n. 2, p. 207-248, 1994. DOI: https://doi.org/10.1080/0267152940090205.

NASCIMENTO, R. D.; GOMES, A. D. T. A relação entre o conhecimento conceitual e o desempenho de estudantes em atividades investigativas. Revista Brasileira de Pesquisa em Educação em Ciências, p. 935-965, 2018. DOI: https://doi.org/10.28976/1984-2686rbpec2018183935.

OECD. PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic and Financial Literacy, PISA, OECD Publishing, Paris, 2016. DOI: https://doi.org/10.1787/9789264255425-en.

SANDOVAL, W. A. Understanding students' practical epistemologies and their influence on learning through inquiry. Science education, v. 89, n. 4, p. 634-656, 2005. DOI: https://doi.org/10.1002/sce.20065.

SCHWICHOW, M. et al. What students learn from hands‐on activities. Journal of research in science teaching, v. 53, n. 7, p. 980-1002, 2016. DOI: https://doi.org/10.1002/tea.21320.

SMITH, C. L.; WENK, L. Relations among three aspects of first‐year college students' epistemologies of science. Journal of Research in Science Teaching, v. 43, n. 8, p. 747-785, 2006. DOI: https://doi.org/10.1002/tea.20113.

STATHOPOULOU, C.; VOSNIADOU, S. Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemporary Educational Psychology, v. 32, n. 3, p. 255-281, 2007. DOI: https://doi.org/10.1016/j.cedpsych.2005.12.002.

TABER, K. S. Reflecting the nature of science in science education. In: TABER, K. S.; AKPAN, B. (Eds.). Science Education: an international course companion. The Netherlands: Sense Publishers, 2017. p. 23-37.

VAN GRIETHUIJSEN, R. A. et al. Global patterns in students’ views of science and interest in science. Research in science education, v. 45, p. 581-603, 2015. DOI: https://doi.org/10.1007/s11165-014-9438-6 .

VORHOLZER, A.; VON AUFSCHNAITER, C.; BOONE, W. J. Fostering upper secondary students’ ability to engage in practices of scientific investigation: A comparative analysis of an explicit and an implicit instructional approach. Research in Science Education, v. 50, p. 333-359, 2020. DOI: https://doi.org/10.1007/s11165-018-9691-1.

WU, H. K.; WU, C. L. Exploring the development of fifth graders' practical epistemologies and explanation skills in inquiry-based learning classrooms. Research in Science Education, v. 41, n. 3, p. 319–340, 2011. DOI: https://doi.org/10.1007/s11165-010-9167-4.

ZÔMPERO, A. F.; LABURÚ, C. E. Atividades investigativas no ensino de ciências: aspectos históricos e diferentes abordagens. Ensaio Pesquisa em Educação em Ciências, v. 13, p. 67-80, 2011. DOI: https://doi.org/10.1590/1983-21172011130305.