Evapotranspiration Behavior of Eucalyptus Plantations Compared to Other Land Uses and Land Covers in the Semiarid Zone of Brazil – South America
PDF-en (Inglês)

Palavras-chave

Brazilian semiarid region
Remote sensing
Water consumption
Forestry

Como Citar

LEITE, Marcos Esdras; MARQUES, Samuel Carlos Santos; SILVA, Lucas Augusto Pereira da; SOUZA, Cristiano Marcelo Pereira de; SANTO, Mario Marcos Espirito; VELOSO, Maria das Dores Magalhães. Evapotranspiration Behavior of Eucalyptus Plantations Compared to Other Land Uses and Land Covers in the Semiarid Zone of Brazil – South America. Sociedade & Natureza, [S. l.], v. 37, n. 1, 2025. DOI: 10.14393/SN-v37-2025-77758. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/77758. Acesso em: 5 dez. 2025.

Resumo

Water consumption by evapotranspiration (ET) of eucalyptus plantations is a concern widely addressed worldwide. However, in the semiarid region of Brazil, a region characterized by recurring water deficit, there is a gap in the knowledge on the effects of eucalyptus plantations on ET dynamics. Therefore, this study aimed to compare the ET rates of eucalyptus to native forests, savannas (Cerrado), dry woodlands (caatingas), pastures, and croplands in the Brazilian semiarid region (BSR). The methodological structure followed the use of remote sensing techniques and statistical tests. From the Google Earth Engine (GEE) platform, monthly and annual ET images for 2022 were obtained from the MOD16A2 product. The results of this study indicated that eucalyptus had significantly higher ET rates (Kruskal-Wallis test followed by the Dunn test; p-value <0.05) compared to most classes. Exceptionally, native forests (Atlantic Forest) exhibited statistically similar (p-value >0.05) water consumption to eucalyptus. Worryingly, eucalyptus, as well as crops, maintained high ET rates during the dry season in the study region. These findings may inform water planning strategies in the Brazilian semiarid region, especially by indicating environmentally sensitive areas for high-impact eucalyptus plantations, where such activity should be restricted. Thus, this study provides substantial information for more sustainable agro-environmental development in semiarid zones.

PDF-en (Inglês)

Referências

AB’SÁBER, Aziz Nacib. Os domínios de natureza no Brasil: potencialidades paisagísticas. São Paulo: Ateliê Editorial, 2003. v. 1.

ADORNO, B. V., BARREIRA, S.; FERREIRA, M. E.; VELOSO, G. A. Influence of native and exotic tree plantations on biophysical indicators in the Brazilian Savanna. Pesquisa Agropecuária Tropical, v. 51, p. e65815, 2021. https://doi.org/10.1590/1983-40632021v5165815

ALLEN, R. G.; PEREIRA, L. S.; HOWELL, T. A.; JENSEN, M. E. Evapotranspiration information reporting: II. Recommended documentation. Agricultural Water Management, v. 98, n. 6, p. 921–929, 2011. https://doi.org/10.1016/j.agwat.2010.12.016

ALMEIDA, A. C.; SOARES, J. V. Comparação entre uso de água em plantações de Eucalyptus grandis e floresta ombrófila densa (Mata Atlântica) na costa leste do Brasil. Revista Árvore, v. 27, p. 159–170, 2003. https://doi.org/10.1590/S0100-67622003000200006

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. D. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013. https://doi.org/10.1127/0941-2948/2013/0507

ANDRADE, R. G.; TEIXEIRA, A. H. D. C.; SANO, E. E.; LEIVAS, J. F.; VICTORIA, D. C.; NOGUEIRA, S. F. Pasture evapotranspiration as indicators of degradation in the Brazilian Savanna: a case study for Alto Tocantins watershed. In: Remote Sensing for Agriculture, Ecosystems, and Hydrology XVI, 2014, [s.l.]. Anais [...]. SPIE, 2014. p. 508–514. https://doi.org/10.1117/12.2067225

ANDRADE, B. C. C.; ANDRADE PINTO, E. J.; RUHOFF, A.; SENAY, G. B. Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: a case study of the Urucuia Aquifer System. International Journal of Applied Earth Observation and Geoinformation, v. 98, p. 102298, 2021. https://doi.org/10.1016/j.jag.2021.102298

BARBOSA, H. A. Understanding the rapid increase in drought stress and its connections with climate desertification since the early 1990s over the Brazilian semi-arid region. Journal of Arid Environments, v. 222, p. 105142, 2024. https://doi.org/10.1016/j.jaridenv.2024.105142

BHATTARAI, N.; WAGLE, P. Recent advances in remote sensing of evapotranspiration. Remote Sensing, v. 13, n. 21, p. 4260, 2021. https://doi.org/10.3390/rs13214260

BRASIL. Lei da Mata Atlântica No. 11.428/2006. Available: https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11428.htm#:~:text=LEI%20N%C2%BA%2011.428%2C%20DE%2022%20DE%20DEZEMBRO%20DE%202006.&text=Disp%C3%B5e%20sobre%20a%20utiliza%C3%A7%C3%A3o%20e,Atl%C3%A2ntica%2C%20e%20d%C3%A1%20outras%20provid%C3%AAncias. Accessed on: jun 19, 2025.

BRASIL. Lei de Proteção à Vegetação No. 12.727/2012. Available: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12727.htm. Acessed on: June 24, 2025.

CHANIE, T.; COLLICK, A. S.; ADGO, E.; LEHMANN, C. J.; STEENHUIS, T. S. Eco-hydrological impacts of Eucalyptus in the semi humid Ethiopian Highlands: the Lake Tana Plain. Journal of Hydrology and Hydromechanics, v. 61, n. 1, p. 21–29, 2013. https://doi.org/10.2478/johh-2013-0004

CHAO, L.; ZHANG, K.; WANG, J.; FENG, J.; ZHANG, M. A comprehensive evaluation of five evapotranspiration datasets based on ground and GRACE satellite observations: implications for improvement of evapotranspiration retrieval algorithm. Remote Sensing, v. 13, n. 12, p. 2414, 2021. https://doi.org/10.3390/rs13122414

CRISTIANO, P. M.; CAMPANELLO, P. I., BUCCI, S. J.; RODRIGUEZ, S. A.; LEZCANO, O. A.; SCHOLZ, F. G.; GOLDSTEIN, G. Evapotranspiration of subtropical forests and tree plantations: a comparative analysis at different temporal and spatial scales. Agricultural and Forest Meteorology, v. 203, p. 96–106, 2015. https://doi.org/10.1016/j.agrformet.2015.01.007

DUNN, O. J. Multiple comparisons using rank sums. Technometrics, v. 6, n. 3, p. 241–252, 1964.https://doi.org/10.1080/00401706.1964.10490181

ENKU, T.; MELESSE, A. M.; AYANA, E. K.; TILAHUN, S. A.; ABATE, M.; STEENHUIS, T. S. Groundwater use of a small Eucalyptus patch during the dry monsoon phase. Biologia, v. 75, n. 6, p. 853–864, 2020. https://doi.org/10.2478/s11756-020-00430-0

FERNANDES, M. F.; CARDOSO, D.; PENNINGTON, R. T.; QUEIROZ, L. P. The origins and historical assembly of the Brazilian Caatinga seasonally dry tropical forests. Frontiers in Ecology and Evolution, v. 10, 2022. https://doi.org/10.3389/fevo.2022.723286

BARROS FERRAZ, S. F.; RODRIGUES, C. B.; GARCIA, L. G.; ALVARES, C. A.; PAULA LIMA, W. Effects of Eucalyptus plantations on streamflow in Brazil: moving beyond the water use debate. Forest Ecology and Management, v. 453, p. 117571, 2019. https://doi.org/10.1016/j.foreco.2019.117571

FICK, S. E.; HIJMANS, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37, p. 4302–4315, 2017. https://doi.org/10.1002/joc.5086

FRANCA ROCHA, W. J.; VASCONCELOS, R. N.; COSTA, D. P.; DUVERGER, S. G.; LOBÃO, J. S.; SOUZA, D. T.; AGUIAR, W. M. Towards uncovering three decades of LULC in the Brazilian Drylands: Caatinga Biome Dynamics (1985–2019). Land, v. 13, n. 8, p. 1250, 2024. https://doi.org/10.3390/land13081250

FU, Z., CIAIS, P.; WIGNERON, J. P.; GENTINE, P.; FELDMAN, A. F.; MAKOWSKI, D.; SMITH, W. K. Global critical soil moisture thresholds of plant water stress. Nature Communications, v. 15, n. 1, p. 4826, 2024. https://doi.org/10.1038/s41467-024-49244-7

GRÜNZWEIG, J. M.; DE BOECK, H. J.; REY, A.; SANTOS, M. J.; ADAM, O.; BAHN, M.; YAKIR, D. Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world. Nature Ecology & Evolution, p. 1–13, 2022. https://doi.org/10.1038/s41559-022-01779-y

HUTLEY, L. B.; O'GRADY, A. P.; EAMUS, D. Evapotranspiration from Eucalypt open-forest savanna of Northern Australia. Functional Ecology, v. 14, n. 2, p. 183–194, 2000. https://doi.org/10.1046/j.1365-2435.2000.00416.x

IBGE – Instituto Brasileiro de Geografia e Estatística. Censo demográfico: 2010. Available: https://censo2010.ibge.gov.br/. Accessed on: nov. 26, 2023.

INMET – Instituto Nacional de Meteorologia. Catálogo de estações automáticas. Available: https://portal.inmet.gov.br/paginas/catalogoaut. Accessed on: jun. 19, 2025.

JARDIM, A. M. D. R. F.; ARAÚJO JÚNIOR, G. D. N.; SILVA, M. V. D.; SANTOS, A. D.; SILVA, J. L. B. D.; PANDORFI, H.; SILVA, T. G. F. D. Using remote sensing to quantify the joint effects of climate and land use/land cover changes on the Caatinga Biome of Northeast Brazilian. Remote Sensing, v. 14, n. 8, p. 1911, 2022. https://doi.org/10.3390/rs14081911

KIM, H. W.; HWANG, K.; MU, Q.; LEE, S. O.; CHOI, M. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering, v. 16, n. 2, p. 229–238, 2012. https://doi.org/10.1007/s12205-012-0006-1

KRUSKAL, W. H.; WALLIS, W. A. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, v. 47, n. 260, p. 583–621, 1952.https://doi.org/10.1080/01621459.1952.10483441

LAPIG – Laboratório de Processamento de Imagens e Geoprocessamento. Atlas das pastagens. 2022. Available: https://lapig.iesa.ufg.br/p/38972-atlas-das-pastagens. Accessed on: nov. 27, 2024.

LEITE, M. E.; ALMEIDA, J. W. L.; SILVA, R. F. Análise espaço-temporal do eucalipto no Norte de Minas Gerais nos anos de 1986, 1996 e 2010. GeoTextos, 2012. https://doi.org/10.9771/1984-5537geo.v8i2.5931

LI, G.; ZHANG, F.; JING, Y.; LIU, Y.; SUN, G. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Science of The Total Environment, v. 596–597, p. 256–265, 2017. https://doi.org/10.1016/j.scitotenv.2017.04.080

LI, X.; ZOU, L.; XIA, J.; DOU, M.; LI, H.; SONG, Z. Untangling the effects of climate change and land use/cover change on spatiotemporal variation of evapotranspiration over China. Journal of Hydrology, v. 612, p. 128189, 2022. https://doi.org/10.1016/j.jhydrol.2022.128189

LIMA, W. P. Comparative evapotranspiration of Eucalyptus, Pine and natural "Cerrado" vegetation measure by the soil water balance method. IPEF International, v. 1, p. 5–11, 1990.

LIU, W.; WU, J.; FAN, H.; DUAN, H.; LI, Q.; YUAN, Y.; ZHANG, H. Estimations of evapotranspiration in an age sequence of Eucalyptus plantations in subtropical China. PLOS ONE, v. 12, n. 4, p. e0174208, 2017. https://doi.org/10.1371/journal.pone.0174208

MAPBIOMAS. Pontos de validação. 2023. Available: https://brasil.mapbiomas.org/pontos-de-validacao/. Accessed on: nov. 26, 2023.

MARENGO, J. A.; TORRES, R. R.; ALVES, L. M. Drought in Northeast Brazil – past, present, and future. Theoretical and Applied Climatology, v. 129, n. 3, p. 1189–1200, 2017. https://doi.org/10.1007/s00704-016-1840-8

MATTOS, T. S.; OLIVEIRA, P. T. S. D.; LUCAS, M. C.; WENDLAND, E. Groundwater recharge decrease replacing pasture by Eucalyptus plantation. Water, v. 11, n. 6, p. 1213, 2019. https://doi.org/10.3390/w11061213

MEDEIROS, R.; ANDRADE, J.; RAMOS, D.; MOURA, M.; PÉREZ-MARIN, A. M.; SANTOS, C. A.; CUNHA, J. Remote sensing phenology of the Brazilian Caatinga and its environmental drivers. Remote Sensing, v. 14, n. 11, p. 2637, 2022. https://doi.org/10.3390/rs14112637

MORO, M. F.; AMORIM, V. O.; DE QUEIROZ, L. P.; DA COSTA, L. R. F.; MAIA, R. P.; TAYLOR, N. P.; ZAPPI, D. C. Biogeographical districts of the Caatinga Dominion: a proposal based on geomorphology and endemism. The Botanical Review, 2024. https://doi.org/10.1007/s12229-024-09304-5

MU, Q.; ZHAO, M.; RUNNING, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, v. 115, n. 8, p. 1781–1800, 2011. https://doi.org/10.1016/j.rse.2011.02.019

NETO, S. P. G. C. Três décadas de Eucalipto no extremo Sul da Bahia. GEOUSP: Espaço e Tempo (Online), v. 16, n. 2, p. 55–68, 2012. https://doi.org/10.11606/issn.2179-0892.geousp.2012.74252

OGLE, D. H.; DOLL, J. C.; WHEELER, A. P. DINNO, A. FSA: Simple fisheries stock assessment methods. version 0.9.5, 2023. Available: https://cran.r-project.org/web/packages/FSA/index.html . Accessed on: nov. 19, 2024.

PAULA SOUSA JÚNIOR, V.; SPARACINO, J.; ESPINDOLA, G. M.; SOUSA DE ASSIS, R. J. Land-use and land-cover dynamics in the Brazilian Caatinga dry tropical forest. Conservation, v. 2, n. 4, p. 739–752, 2022. https://doi.org/10.3390/conservation2040048

PEIXOTO NETO, A. M.; CARTWRIGHT, I.; SILVA, M. R.; MCHUGH, I.; DRESEL, P. E.; TEODOSIO, B.; DALY, E. Linking evapotranspiration seasonal cycles to the water balance of headwater catchments with contrasting land uses. Hydrological Processes, v. 36, n. 12, p. e14784, 2022. https://doi.org/10.1002/hyp.14784

PENNINGTON, R. T.; LEHMANN, C. E. R.; ROWLAND, L. M. Tropical savannas and dry forests. Current Biology, v. 28, n. 9, p. R541–R545, 2018. https://doi.org/10.1016/j.cub.2018.03.014

QGIS. Spatial without Compromise QGIS Web Site. 2024. Available: https://www.qgis.org/. Accessed on: aug. 20, 2024.

RIBEIRO, J. F.; WALTER, B. M. Teles. Fitofisionomias do bioma cerrado. In: SANO, S. M.; ALMEIDA, S. P. (ed.). Cerrado: ecologia e flora. Planaltina: Embrapa Cerrados, 2008. p. 152–212.

PEIXOTO NETO, A. M.; CARTWRIGHT, I.; SILVA, M. R.; MCHUGH, I.; DRESEL, P. E.; TEODOSIO, B. Daly Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, v. 58, n. 8, p. 1658–1676, 2013. https://doi.org/10.1080/02626667.2013.837578

RUNNING, S.; MU, Q.; ZHAO, M. MOD16A2 MODIS/Terra net evapotranspiration 8-day L4 global 500m SIN Grid v006. NASA EOSDIS Land Processes DAAC, v. 6, 2017. https://doi.org/10.5067/MODIS/MOD16A2.006

SAITER, F. Z.; EISENLOHR, P. V.; BARBOSA, M. R.; THOMAS, W. W.; OLIVEIRA-FILHO, A. T. From evergreen to deciduous tropical forests: how energy-water balance, temperature, and space influence the tree species composition in a high diversity region. Plant Ecology & Diversity, v. 9, n. 1, p. 45–54, 2016. https://doi.org/10.1080/17550874.2015.1075623

SALES, L. P.; PIRES, M. M. Identifying climate change refugia for South American biodiversity. Conservation Biology, v. 37, n. 4, p. e14087, 2023. https://doi.org/10.1111/cobi.14087

SAMPAIO, G.; NOBRE, C.; COSTA, M. H.; SATYAMURTY, P.; SOARES‐FILHO, B. S.; CARDOSO, M. Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophysical Research Letters, v. 34, n. 17, 2007. https://doi.org/10.1029/2007GL030612

SANTOS, W. R.; JARDIM, A. M. D. R. F.; DE SOUZA, L. S. B.; DE SOUZA, C. A. A.; MORAIS, J. E. F.; ALVES, C. P.; SILVA, T. G. F. Can changes in land use in a semi-arid region of Brazil cause seasonal variation in energy partitioning and evapotranspiration? Journal of Environmental Management, v. 367, p. 121959, 2024. https://doi.org/10.1016/j.jenvman.2024.121959

SCHUME, H.; HAILU, Z.; HAILU, T.; SIEGHARDT, M.; GODBOLD, D. L. Spatial analysis of soil water depletion and biomass production in the transition zone between a Eucalyptus camaldulensis stand and a maize field in Ethiopia. Agricultural and Forest Meteorology, v. 320, p. 108956, 2022. https://doi.org/10.1016/j.agrformet.2022.108956

SHI, Z.; XU, D.; YANG, X.; JIA, Z.; GUO, H.; ZHANG, N. Ecohydrological impacts of Eucalypt plantations: a review. Journal of Food, Agriculture and Environment, v. 10, p. 1419–1426, 2012.

SILVA, B. B.; WILCOX, B. P.; SILVA, V. D. P. R.; MONTENEGRO, S. M. G. L.; OLIVEIRA, L. M. M. Changes to the energy budget and evapotranspiration following conversion of tropical savannas to agricultural lands in São Paulo State, Brazil. Ecohydrology, v. 8, n. 7, p. 1272–1283, 2015. https://doi.org/10.1002/eco.1580

SILVA, L. A.; DE SOUZA, C. M. P.; LEITE, M. E.; FILGUEIRAS, R. Estimativa da perda de água na APA do Rio Pandeiros, Minas Gerais. Caderno de Geografia, v. 30, n. 62, p. 768, 2020. https://doi.org/10.5752/P.2318-2962.2020v30n62p768

SOUZA JR, C. M.; Z. SHIMBO, J.; ROSA, M. R.; PARENTE, L. L.; A. ALENCAR, A.; RUDORFF, B. F.; AZEVEDO, T. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sensing, v. 12, n. 17, p. 2735, 2020. https://doi.org/10.3390/rs12172735

TEIXEIRA, A.; LEIVAS, J.; TAKEMURA, C.; BAYMA, G.; GARÇON, E.; SOUSA, I.; SILVA, C. Remote sensing environmental indicators for monitoring spatial and temporal dynamics of weather and vegetation conditions: applications for Brazilian biomes. Environmental Monitoring and Assessment, v. 195, n. 8, p. 944, 2023. https://doi.org/10.1007/s10661-023-11560-8

VAN ZYL, J. J. The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, v. 48, p. 559–565, 2001. https://doi.org/10.1016/S0094-5765(01)00020-0

WANG, Q.; CHENG, L.; ZHANG, L.; LIU, P.; QIN, S.; LIU, L.; JING, Z. Quantifying the impacts of land-cover changes on global evapotranspiration based on the continuous remote sensing observations during 1982–2016. Journal of Hydrology, v. 598, p. 126231, 2021. https://doi.org/10.1016/j.jhydrol.2021.126231

YANG, Z.; ZHANG, Q.; HAO, X.; YUE, P. Changes in evapotranspiration over global semiarid regions 1984–2013. Journal of Geophysical Research: Atmospheres, v. 124, n. 6, p. 2946–2963, 2019. https://doi.org/10.1029/2018JD029533

ZHANG, Y.; PEÑA-ARANCIBIA, J. L.; MCVICAR, T. R.; CHIEW, F. H.; VAZE, J.; LIU, C.; PAN, M. Multi-decadal trends in global terrestrial evapotranspiration and its components. Scientific Reports, v. 6, n. 1, p. 19124, 2016. https://doi.org/10.1038/srep19124

ZHANG, K; KIMBALL, J. S.; RUNNING, S. W. A review of remote sensing-based actual evapotranspiration estimation. WIREs Water, v. 3, n. 6, p. 834–853, 2016. https://doi.org/10.1002/wat2.1168

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Marcos Esdras Leite, Samuel Carlos Santos Marques, Lucas Augusto Pereira da Silva, Cristiano Marcelo Pereira de Souza, Mario Marcos Espirito Santo, Maria das Dores Magalhães Veloso

##plugins.themes.healthSciences.displayStats.downloads##

##plugins.themes.healthSciences.displayStats.noStats##