Resumo
This study investigates Lagoa dos Patos's bathing water quality parameters, located in Pelotas, focusing on assessing the influence of estuarine conditions. Statistical analysis was conducted on water quality data from 2015 to 2022, with parameters including Escherichia coli, turbidity, organic matter, phosphorus, and chlorides. Two principal components were extracted using the Kaiser criterion and cumulative variance threshold, revealing significant correlations between chloride concentrations and various water quality parameters. The results indicate that salinity, represented by chlorides, plays a critical role in influencing water quality, particularly in brackish water conditions. Notably, Escherichia coli concentrations showed a reversal of correlation direction at higher salinity levels, suggesting potential limitations in using the microbiological indicator in estuarine environments. Furthermore, significantly higher levels of organic matter were observed in brackish water, likely due to anthropogenic inputs such as effluent discharge. These findings highlight the importance of considering alternative water quality indicators in estuarine areas, as traditional microbiological markers may not fully reflect the environmental dynamics of these systems. This study provides valuable insights for decision-makers in managing water quality and public health in coastal and estuarine regions. Furthermore, this research aligns with several Sustainable Development Goals, notably Goal 6 (Clean Water and Sanitation), by improving water quality and addressing pollution. It also supports Goal 14 (Life Below Water) by examining the impact of environmental factors on coastal ecosystems, Goal 3 (Good Health and Well-being) by highlighting the importance of water quality for public health, and Goal 13 (Climate Action) due to the influence of environmental changes on salinity.
Referências
ABREU, P. C.; BERGESCH, M.; PROENÇA, L. A.; GARCIA, C. A. E.; ODEBRECHT, C. Short- and Long-Term Chlorophyll a Variability in the Shallow Microtidal Patos Lagoon Estuary, Southern Brazil. Estuaries and Coasts, v. 33, 554–569, 2010. https://doi.org/10.1007/s12237-009-9181-9
ANDERSON, I. C.; RHODES, M.; KATOR, H. Sublethal stress in Escherichia coli: a function of salinity. Applied and Environmental Microbiology, v. 38, 1147-1152, 1979. https://doi.org/10.1128/aem
APHA. Standard Methods for the Examination of Water and Wastewater. 21th ed. Washington: APHA, AWWA, WPCF, 2005.
BELARMINO, E.; CABRAL, H.; GARCIA, A. M. Long-term trends in the functional structure of estuarine fish assemblages in a subtropical estuary and its relationships with local environmental variability, man-made changes, and climatic drivers. Marine Environmental Research, v. 201, 106698, 2024. https://doi.org/10.1016/j.marenvres.2024.106698
CARLUCCI, A. F.; PRAMER, D. An evaluation of factors affecting the survival of Escherichia coli in sea water. II. Salinity, pH, and nutrients. Applied Microbiology, v. 8, n. 4, 1960. https://doi.org/10.1128/aem.8.4.247-250.1960
COLAIUDA, V.; DI GIACINTO, F.; LOMBARDI, A.; IPPOLITI, C.; GIANSANTE, C.; LATINI, M.; MASCILONGO, G.; DI RENZO, L.; BERTI, M.; CONTE, A.; FERRI, N.; VERDECCHIA, M.; TOMASSETTI, B. Evaluating the impact of hydrometeorological conditions on E. coli concentration in farmed mussels and clams: experience in Central Italy. Journal of Water and Health, v. 19, n. 3, p. 512–533, 2021. https://doi.org/10.2166/wh.2021.203
CONAMA. Resolução nº 357, de 15 de março de 2005. Conselho Nacional do Meio Ambiente, Brasil, 2005.
COSTA, R. L.; CARREIRA, R. S. A comparison between faecal sterols and coliform counts in the investigation of sewage contamination in sediments. Brazilian Journal of Oceanography, v. 53, n. 4, 157–167, 2005. https://doi.org/10.1590/S1679-87592005000200006
COSTA, C. R.; COSTA, M.; DANTAS, D. V.; BARLETTA, M. Interannual and seasonal variations in estuarine water quality. Frontiers in Marine Science, v. 301, 2018. https://doi.org/10.3389/fmars.2018.00301
CRESWELL, J. W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. California: SAGE Publications, 2009.
DEVILBISS, S. E.; STEELE, M. K.; KROMETIS, H. L.; BADGLEY, B. D. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. Water Research, v. 191, 2021. https://doi.org/10.1016/j.watres.2021.116812.
DESTA, B. N.; TUSTIN, J.; SANCHEZ, J. J.; HEASLEY, C.; SCHWANDT, M.; BISHAY, F.; CHAN, B.; KNEZEVIC-STEVANOVIC, A.; ASH, R.; JANTZEN, D.; YOUNG, I. Environmental predictors of Escherichia coli concentration at marine beaches in Vancouver, Canada: a Bayesian mixed-effects modelling analysis. Epidemiology and Infection, v. 152, 2024. https://doi.org/10.1017/S0950268824000311
FAN, H.; YAN, H.; TENG, L.; LIU, R.; LI, Z.; CHENG, H.; ZHANG, E. The effects of extreme flood events on the turbidity maximum zone in the Yangtze (Changjiang) Estuary, China. Marine Geology, v. 456, 2023. https://doi.org/10.1016/j.margeo.2023.106993
FULKE, A. B.; PANIGRAHI, P. J.; ERANEZAHTH, S.; KARTHI, J.; DORA, G. U. Environmental variables and its association with faecal coliform at Madh Island beaches of megacity Mumbai, India. Environmental Pollution, v. 341, 2024. https://doi.org/10.1016/j.envpol.2023.122885
FRENA, M.; SANTOS, A. P. S.; SOUZA, M. R. R.; CARVALHO, S. S.; MADUREIRA, L. A. S.; ALEXANDRE, M. R. Sterol biomarkers and fecal coliforms in a tropical estuary: seasonal distribution and sources. Marine Pollution Bulletin, v. 139, p. 111–116, 2019. https://doi.org/10.1016/j.marpolbul.2018.12.007
GREAVES, J.; STONE, D.; WU, Z.; BIBBY, K. Persistence of emerging viral fecal indicators in large-scale freshwater mesocosms. Water Research: Open, v. 9, 2020.
https://doi.org/10.1016/j.wroa.2020.100067
HAIR, J. F.; BLACK, W. C.; BABIN, B. J.; ANDERSON, R. E.; TATHAM, R. L. Análise Multivariada de Dados. 6. ed. Porto Alegre: Bookman, 2009.
HANES, N. B.; FRAGALA, R. Effect of seawater concentration on survival of indicator bacteria. Journal of the Water Pollution Control Federation, p. 97–104, 1967.
HIRAI, F. M.; PORTO, M. F. A. O desenvolvimento de ferramentas de predição de balneabilidade baseadas em níveis de precipitação: estudo de caso da praia de Cachoeira das Emas (SP). Engenharia Sanitária e Ambiental, v. 21, p. 797–806, 2016. https://doi.org/10.1590/s1413-41522016131249
JAMOVI PROJECT. Jamovi (Versão 2.6). 2025.
JIN, G.; ENGLANDE, A. J.; BRADFORD, H.; JENG, H. Comparison of E. coli, Enterococci, and Fecal Coliform as Indicators for Brackish Water Quality Assessment. Water Environment Research, v. 76, p. 245–255, 2004. https://doi.org/10.2175/106143004X141807
KATARZYTE, M.; MEZINE, J.; VAICIUTE, D.; LIAUGAUDAITE, S.; MUKAUSKAITE, K.; UMGIESSER, G.; SCHERNEWSKI, G. Fecal contamination in shallow temperate estuarine lagoon: Source of the pollution and environmental factors. Marine Pollution Bulletin, v. 133, p. 762–772, 2018. https://doi.org/10.1016/j.marpolbul.2018.06.022
KJERFVE, B. Comparative oceanography of coastal lagoons. Estuarine Variability, p. 63 –81, 1986. https://doi.org/10.1016/B978-0-12-761890-6.50009-5
KORAJKIC, A.; MCMINN, B. R.; HARWOOD, V. J. Relationships between microbial indicators and pathogens in recreational water settings. International Journal of Environmental Research and Public Health, v. 15, 2018. https://doi.org/10.3390/IJERPH15122842.
LEAL, D. A. G.; GOULART, J. A. G.; BONATTI, T. R.; ARAUJO, R. S.; JUNIOR, J. A. A. J.; SHIMADA, M. K.; GONÇALVES, G. H. P.; RORATTO, P. A.; SCHERER, G. S. A two-year monitoring of Cryptosporidium spp. oocysts and Giardia spp. cysts in freshwater and seawater: A complementary strategy for measuring sanitary patterns of recreational tropical coastal areas from Brazil. Regional Studies in Marine Science, v. 70, 2024. https://doi.org/10.1016/j.rsma.2023.103356
LEW, S.; GLINSKA-LEWCZUK, K.; BURANDT, P.; GRZYBOWSKI, M.; OBOLEWSKI, K. Fecal bacteria in coastal lakes: An anthropogenic contamination or natural element of microbial diversity? Ecological Indicators, v. 152, 2023. https://doi.org/10.1016/j.ecolind.2023.110370
LI, D.; LIU, B.; LU, Y.; FU, J. The characteristic of compound drought and saltwater intrusion events in the several major river estuaries worldwide. Journal of Environmental Management, v. 350, 2024. https://doi.org/10.1016/j.jenvman.2023.119659
MARQUES, W. C.; FERNANDES, E. H. L.; MORAES, B. C.; MOLLER, O. O.; MALCHEREK, A. Dynamics of the Patos Lagoon coastal plume and its contribution to the deposition pattern of the southern Brazilian inner shelf. Journal of Geophysical Research: Oceans, v. 115, 2010. https://doi.org/10.1029/2010JC006190
MATOS, D. A. S.; RODRIGUES, E. C. Análise Fatorial. Brasília: Enap, 2019.
MEDEIROS, P. M.; BÍCEGO, M. C.; CASTELAO, R. M.; DEL ROSSO, C.; FILLMANN, G.; ZAMBONI, A. J. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil. Environment International, v. 31, p. 77–87, 2005. https://doi.org/10.1016/j.envint.2004.07.001
MOLLER, O. O.; CASTAING, P.; SALOMON, J.-C.; LAZURE, P. The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries, v. 24, 2001. https://doi.org/10.2307/1352953
NEWTON, A.; MISTRI, M.; PÉREZ-RUZAFA, A.; REIZOPOULOU, S. Ecosystem services, biodiversity, and water quality in transitional ecosystems. Frontiers in Ecology and Evolution, v. 11, 2023. https://doi.org/10.3389/fevo.2023.1136750
OBOLEWSKI, K.; GLINSKA-LEWCZUK, K. Connectivity and complexity of coastal lakes as determinants for their restoration – A case study of the southern Baltic Sea. Ecological Engineering,1 v. 55, 2020. https://doi.org/10.1016/j.ecoleng.2020.105948
ODEBRECHT, C.; SECHCUI, E. R.; ABREU, P. C.; MUELBERT, J. H.; UIBLEIN, F. Biota of the Patos Lagoon estuary and adjacent marine coast: long-term changes induced by natural and human-related factors. Marine Biology Research, v. 13, 3–8, 2017. https://doi.org/10.1080/17451000.2016.1258714
OLIVEIRA, A. S.; SOUZA, J. C.; SANTOS, A. L. R.; OLIVEIRA, R. S.; CESAR, D. E.; RODRIGUES, E. M. Microrganismos no sedimento de margens opostas do estuário do Rio Coreaú em Camocim/CE. Acta Ambiental Catarinense, v. 18, 2021. https://doi.org/10.24021/raac.v18i1.5580
PARTHA, S. P.; BHARATHIDASAN, V.; DAMOTHARAN, P.; SELVARAJ, P.; MURUGESAN, P.; SIVARAJ, S.; SYED, A.; ELGORBAN, A. M. Assessment of ecological status of Uppanar and Vellar estuaries through multivariate pollution indices. Marine Pollution Bulletin, v. 203, 116390, 2024. https://doi.org/10.1016/j.marpolbul.2024.116390
PEARMAN, J.; THOMSON-LAING, G.; WATERS, S.; BIESSY, L. Local factors drive bacterial and microeukaryotic community composition in lake surface sediment collected across an altitudinal gradient. FEMS Microbiology Ecology, v. 96, 2020. https://doi.org/10.1093/femsec/fiaa070
PEREIRA, T. L.; WALLNER-KERSANAACH, M.; COSTA, L. D. F.; COSTA, D. P.; BAISCH, P. R. M. Nickel, vanadium, and lead as indicators of sediment contamination of marina, refinery, and shipyard areas. Environmental Science and Pollution Research, v. 25, p. 1719–1730, 2018. https://doi.org/10.1007/s11356-017-0503-3
SANTA-ROSA, P. R. A.; SCHETTINI, C. A. F. Daily variability of estuary-shelf exchange at the Lagoa dos Patos’s mouth. Regional Studies in Marine Science, v. 77, 2024. https://doi.org/10.1016/j.rsma.2024.103633
SEELIGER, U. The Patos Lagoon Estuary, Brazil. Springer Berlin Heidelberg, v. 10, p. 167–183, 2001. https://doi.org/10.1007/978-3-662-04482-7_13
SHIH, Y. J.; CHEN, J. S.; CHEN, Y. J.; YANG, P. Y.; KUO, Y. J.; CHEN, T. H.; HSU, B. M. Impact of heavy precipitation events on pathogen occurrence in estuarine areas of the Puzi River in Taiwan. PLOS ONE, v. 6, p. 256–266, 2021. https://doi.org/10.1371/journal.pone.0256266
WALTERS, E.; GRAMIL, M.; BEHLE, C.; MULLER, E.; HORN, H. Influence of particle association and suspended solids on UV inactivation of fecal indicator bacteria in an urban river. Water, Air, & Soil Pollution, v. 225, n. 822, 2014. https://doi.org/10.1007/s11270-013-1822-8
WEISSHELMER, N. F.; COLLING, L. A. Functional diversity of benthic macrofauna during and after an El Niño event in a subtropical estuary. Estuarine, Coastal and Shelf Science, v. 304, 2024. https://doi.org/10.1016/j.ecss.2024.108828
XU, H. S.; ROBERTS, N.; SINGLETON, F. L.; ATTWELL, R. W.; GRIMES, D. J.; COLWELL, R. R. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, v. 8, 313–323, 1982. https://doi.org/10.1007/BF02010671
ZEKI, S.; ALAN, A.; BURAK, S.; ROSE, J. B. Occurrence of a human-associated microbial source tracking marker and its relationship with faecal indicator bacteria in an urban estuary. Letters in Applied Microbiology, v. 72, 2021. https://doi.org/10.1111/lam.13405
ZHANG, W.; WAN, W.; LIN, PAN, X.; LIN, L.; YANG, Y. Nitrogen rather than phosphorus driving the biogeographic patterns of abundant bacterial taxa in a eutrophic plateau lake. Science of The Total Environment, v. 806, 2022. https://doi.org/10.1016/j.scitotenv.2021.150947
ZHANG, X.; QI, L.; LI, W.; HU, B.; DAI, Z. Bacterial community variations with salinity in the saltwater-intruded estuarine aquifer. Science of The Total Environment, v. 755, 2021a. https://doi.org/10.1016/j.scitotenv.2020.142423
ZHANG, Y.; REN, J.; ZHANG, W.; U, J. Importance of salinity-induced stratification on flocculation in tidal estuaries. Journal of Hydrology, v. 596, 2021b. https://doi.org/10.1016/j.jhydrol.2021.126063

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Daniele Martin Sampaio, Rubia Flores Romani, Cícero de Coelho Escobar, Pascal Silas Thue, Hartur Xavier Pinheiro, Maicon Oliveira Luiz
