Hydrological response of hydrographic sub-basins in the Piracicaba River Basin - Southeast Region of Brazil
PDF-en (English)

Palavras-chave

Watershed
Flow
Water resource management
Rainfall
Runoff

Como Citar

PEREIRA CARVALHO, A. C. P.; LORANDI, R.; LOLLO, J. A. D.; COLLARES, E. G.; MOSCHINI, L. E. Hydrological response of hydrographic sub-basins in the Piracicaba River Basin - Southeast Region of Brazil. Sociedade & Natureza, [S. l.], v. 34, n. 1, 2022. DOI: 10.14393/SN-v34-2022-63522. Disponível em: https://seer.ufu.br/index.php/sociedadenatureza/article/view/63522. Acesso em: 11 ago. 2022.

Resumo

The use of water for several human needs, associated with climate change, indicates how important it is to understand the response of watersheds, in order to provide adequate planning and management of water resources. This study was carried out in two pairs of hydrographic watersheds, in the Piracicaba River Basin, southeast of Brazil, analyzing water response, integrating in-situ collected precipitation and flow data, natural environmental attributes, and anthropic environmental data. To support the analysis, Surface Runoff Potential Charts (SRPC) were made. The evaluation of the physical characteristics of the sub- watersheds (SW(A) and SW(B)) shows that these areas present very low to low potential, indicating greater infiltration capacity. The use and coverage of the soil partially justifyies flow changes in pair 1, since SW(A) has a larger extent of agricultural areas that can use irrigation. SW(B), even with a greater variety of crops, has a smaller cultivated area and tends to demand less water. As for pair 2, the low runoff potential was mainly due to the predominance of flat relief in the sub-basins. Their soils present a higher fraction of silt and clay, with thicknesses > 5m in SW(C) and varying from 0.5m, reaching depths above 5m in SW(D). The physical properties of these soils do not provide a low flow rate, but when associated with the low slope of the land, geological characteristics and low drainage density are configured in regions where the flow flows more slowly, contributing to the evaporation and infiltration process. The use and coverage of the soil also partially justifyies the flow oscillations, due to anthropic activities in SW(C) and SW(D), such as irrigation and spraying of citrus, fertirrigation of sugarcane, irrigation of seedling nurseries, directly interfering with the availability of surface water.

https://doi.org/10.14393/SN-v34-2022-63522
PDF-en (English)

Referências

AGÊNCIA DAS BACIAS PCJ. Relatório de situação dos recursos hídricos 2020 (ano base 2019). 2021. Available: https://agencia.baciaspcj.org.br/instrumento-de-gesto/relatorios-de-situacoes/. Accessed in: 14 dez. 2021.

ANA - Agência Nacional de Águas e Saneamento Básico. Caderno de Capacitação em Recursos Hídricos - Outorga de Direito de Uso de Recursos Hídricos, 2011.

ANA - Agência Nacional de Águas e Saneamento Básico. Base Hidrográfica Ottocodificada das Bacias Hidrográficas do Piracicaba, Capivari e Jundiaí, 2013. Available: https://metadados.ana.gov.br/geonetwork/srv/pt/main.home. Accessed in: 10 November 2019.

ARANTES, L. T. et al. Surface runoff associated with climate change and land use and land cover in southeast region of Brazil. Environmental Challenges, v. 3, n. February, p. 100054, 2021. https://doi.org/10.1016/j.envc.2021.100054.

ASF Data Search Vertex. Digital Elevation Model. 2021. Available: https://search.asf.alaska.edu/#/. Accessed in: 20 August 2021.

BELL, V. A. et al. How might climate change affect river flows across the Thames Basin ? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. Journal of Hydrology, v. 442–443, p. 89–104, 2012. http://dx.doi.org/10.1016/j.jhydrol.2012.04.001

BESKOW, S. et al. Potential of the LASH model for water resources management in data-scarce basins: a case study of the Fragata River basin, southern Brazil. Hydrological Sciences Journal, v. 61, n. 14, p. 2567–2578, 2016. https://doi: 10.1080/02626667.2015.1133912.

CALETKA, M. et al. Improvement of SCS-CN initial abstraction coefficient in the Czech Republic: A study of five catchments. Water (Switzerland), v. 12, n. 7, p. 1–28, 2020. https://doi.org/10.3390/w12071964.

CARDOSO, A. B. F. Mapeamento Geotécnico do município de Limeira - SP. Dissertation, University of São Paulo, 1993.

CARVALHO, A.C.P.; CARVALHO, A.P.P.; DI LOLLO, J.A.; COLLARES, E.G.; LORANDI, R., MOSCHINI, L.E. Proposta de método para a escolha de áreas de drenagem amostrais e suas relações com variáveis hidrológicas na região sudeste do Estado de São Paulo - Brasil. Revista de Gestão Água da América Latina, 17, 1-16, 2020. https://doi.org/10.21168/rega.v17e10.

CARVALHO, A. P. P. et al. Potential water demand from the agricultural sector in hydrographic sub-basins in the southeast of the state of São Paulo-Brazil. Agriculture, Ecosystems and Environment, v. 319, n. January, 2021. https://doi.org/10.1016/j.agee.2021.107508.

CHOUBIN, B. et al. Streamflow regionalization using a similarity approach in ungauged basins: Application of the geo-environmental signatures in the Karkheh River Basin, Iran. Catena, v. 182, n. March, p. 104128, 2019. https://doi: 10.1016/j.catena.2019.104128.

COMITÊ DAS BACIAS PCJ. Relatório de Situação dos Recursos Hídricos Ano Base 2018. Piracicaba: Agências das Bacias PCJ, 2019. Available: http://www.agencia.baciaspcj.org.br/novo/instrumentos-de-gestao/relatorios-de-situacoes. Accessed in: 10 February 2020.

DANTAS-FERREIRA, M. Proposta de índice de processos erosivos acelerados a partir de levantamento e diagnóstico Geológico-Geotécnico de áreas degradadas. Thesis, University of São Paulo, 2008.

DENG, W. et al. Isolating of climate and land surface contribution to basin runoff variability: A case study from the Weihe River Basin, China. Ecological Engineering, v. 153, n. May, p. 105904, 2020. https://doi:10.1016/j.ecoleng.2020.105904.

DIAS, C. C. Avaliação geoambiental da região do Médio Rio Grande. 2013. Dissertação (Mestrado em Geotecnia) - Escola de Engenharia de São Carlos, University of São Paulo, São Carlos, 2013. https://doi:10.11606/D.18.2013.tde-04082014-102216.

FERREIRA, S. C. G.; DE LIMA, A. M. M.; CORRÊA, J. A. M. Indicators of hydrological sustainability, governance and water resource regulation in the Moju river basin (PA) – Eastern Amazonia. Journal of Environmental Management, v. 263, n. March, 2020. https://doi: 10.1016/j.jenvman.2020.110354.

GOOGLE EARTH PRO. Version 7.3. 2021. https://www.google.com.br/earth/download/gep/agree.html.

JIAN, J.; RYU, D.; WANG, Q. J. A water-level based calibration of rainfall-runoff models constrained by regionalized discharge indices. Journal of Hydrology, p. 126937, 2021. https://doi.org/10.1016/ j.jhydrol.2021.126937.

KUMAR, A. et al. Surface runoff estimation of Sind river basin using integrated SCS-CN and GIS techniques. HydroResearch, v. 4, p. 61–74, 2021. https://doi.org/10.1016/j.hydres.2021.08.001.

LELIS, L. C. DA S. et al. Assessment of hydrological regionalization methodologies for the upper Jaguari River basin. Journal of South American Earth Sciences, v. 97, n. July 2019, 2020. https://doi: 10.1016/j.jsames.2019.102402.

LIU, D. et al. Rainfall intensity and slope gradient effects on sediment losses and splash from a saline-sodic soil under coastal reclamation. Catena, v. 128, p. 54–62, 2015. http://dx.doi.org/10.1016/j.catena.2015.01.022.

LOPES, T. R. et al. Hydrological modeling for the Piracicaba River basin to support water management and ecosystem services. Journal of South American Earth Sciences, v. 103, n. July, 2020. https://doi.org/10.1016/j.jsames.2020.102752.

LORANDI, R.; DI LOLLO, J.A.; MOSCHINI, L.E.; COLLARES, E.G.; CARVALHO, A.C.P.; CARVALHO, A.P.P. Análise espacial da disponibilidade hídrica nas Sub-bacias Hidrográficas do Rio Piracicaba (SP) para a proposição de instrumento de planejamento e gestão dos recursos hídricos. Relatório Parcial de Pesquisa. UFSCar/FAPESP - Processo: 2018/14145-4, 2019.

MALEKIAN, A. et al. Development of a New Integrated Framework for Improved Rainfall-Runoff Modeling under Climate Variability and Human Activities. Water Resources Management, v. 33, n. 7, p. 2501–2515, 2019. https://doi: 10.1007/s11269-019-02281-0.

MAO, G. et al. Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation. Physics and Chemistry of the Earth, v. 123, p. 103026, 2021. https://doi.org/10.1016/j.pce.2021.103026.

MEHBOOB, M. S.; KIM, Y. Effect of climate and socioeconomic changes on future surface water availability from mountainous water sources in Pakistan’s Upper Indus Basin. Science of the Total Environment, v. 769, p. 144820, 2021.https://doi.org/10.1016/j.scitotenv.2020.144820

MELATI, M. D.; MARCUZZO, F. F. N. Regressões simples e robusta na regionalização da vazão Q95 na Bacia Hidrográfica do Taquari-Antas Simple and robust regressions in flows regionalization of Q95 in Taquari-Antas river basin. Ciencia e Natura, v. 38, p. 722–739, 2016. https://doi.org/10.5902/2179460X19800.

OKKAN, U. et al. Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: A nested hybrid rainfall-runoff modeling. Journal of Hydrology, v. 598, n. May, p. 126433, 2021. https://doi.org/10.1016/j.jhydrol.2021.126433.

PEJON, O. J. Mapeamento Geotécnico de Piracicaba. 1:100.000: Estudo de Aspectos Metodológicos de Caracterização e de Apresentação dos Atributos. Thesis, University of São Paulo, 1992.

PIRNIA, A. et al. Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. Journal of Hydro-Environment Research, v. 25, n. April, p. 12–24, 2019. https://doi: 10.1016/j.jher.2019.05.001.

PLANET. Imagens RapidEye 2019. https://www.planet.com/. Accessed in: 10 November 2019.

RAHMAN, K. et al. An independent and combined effect analysis of land use and climate change in the upper Rhone River watershed, Switzerland. Applied Geography, v. 63, p. 264–272, 2015. https://doi: 10.1016/j.apgeog.2015.06.021.

RAO, A. R.; SRINIVAS, V. V. Regionalization of watersheds by fuzzy cluster analysis. Journal of Hydrology, v. 318, n. 1–4, p. 57–79, 2006. https://doi: 10.1016/j.jhydrol.2005.06.004.

SAJIKUMAR, N.; REMYA, R. S. Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management, v. 161, p. 460–468, 2015. http://dx.doi.org/10.1016/j.jenvman.2014.12.041.

SANTOS, I.; FILL, H.D.; SUGAI, M.R.V.B.; BUBA, H.; KISHI, R.T.; MARONE, E.; LAUTERT, L.F. Hidrometria aplicada. Instituto de Tecnologia para o Desenvolvimento, LACTEC, Curitiba, 2001.

SHYAM, G. M. et al. Sustainable water management using rainfall-runoff modeling: A geospatial approach. Groundwater for Sustainable Development, v. 15, n. August, p. 100676, 2021. https://doi.org/10.1016/j.gsd.2021.100676.

SOKOL, Z.; BLIŽŇÁK, V. Areal distribution and precipitation-altitude relationship of heavy short-term precipitation in the Czech Republic in the warm part of the year. Atmospheric Research, v. 94, n. 4, p. 652–662, 2009. https://doi.10.1016/j.atmosres.2009.03.001.

SORIANO, É. et al. Water crisis in São Paulo evaluated under the disaster’s point of view. Ambient. Soc., 19, p. 21-42, 2016. https://doi.org/10.1590/1809-4422asoc150120r1v1912016.

SSRH - Secretaria de Saneamento e Recursos Hídricos. Situação dos recursos hídricos no estado de São Paulo 2016. 2018. Available: http://www.sigrh.sp.gov.br/relatoriosituacaodosrecursoshidricos. Accessed in: 18 August 2020.

STRAHLER, A. N. Quantitative analysis of watershed geomorphology. New Halen: Trans Am Geophys Union 38:913-920, 1957. https://doi.org/10.1029/TR038i006p00913.

SUMAN, M.; MAITY, R. Hybrid Wavelet-ARX approach for modeling association between rainfall and meteorological forcings at river basin scale. Journal of Hydrology, v. 577, n. July, p. 123918, 2019. https://doi: 10.1016/j.jhydrol.2019.123918.

SUN, L.; ZHOU, J. L.; CAI, Q. Impacts of soil properties on flow velocity under rainfall events: Evidence from soils across the Loess Plateau. Catena, v. 194, n. May, p. 104704, 2020. https://doi.org/10.1016/j.catena.2020.104704.

TIKHAMARINE, Y. et al. Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization. Journal of Hydrology, v. 589, n. June, p. 125133, 2020. https://doi: 10.1016/j.jhydrol.2020.125133.

TUNDISI, J.G.; TUNDISI, T. M. As múltiplas dimensões da crise hídrica. 2015. Rev USP 21. https://doi.org/10.11606/issn.2316-9036.v0i106p21-30.

VALADARES, A. P. Mapeamento pedológico digital por mineração de dados: bases de treinamento para o nível de reconhecimento. Dissertation, Agronomic Institute of Campinas, 2017.

XAVIER, A. L. dos S. A contribuição dos Comitês de Bacia Estadual e Federal à gestão das bacias hidrográficas dos rios Piracicaba, Capivari e Jundiai, em São Paulo: ações mais relavantes, perspectivas e desafios (1993-2006). 2006. Dissertação (Mestrado em Planejamento Urbano e Regional) - Faculdade de Arquitetura e Urbanismo, University of São Paulo, São Paulo, 2007. https://doi:10.11606/D.16.2007.tde-19092007-123444.

WADA, Y.; BIERKENS, M. F. P. Sustainability of global water use: Past reconstruction and future projections. Environmental Research Letters, v. 9, n. 10, 2014. https://doi.org/10.1088/1748-9326/9/10/104003.

WANG, H.; CHEN, L.; YU, X. Distinguishing human and climate influences on streamflow changes in Luan River basin in China. Catena, v. 136, p. 182–188, 2016. https://doi.org/10.1016/j.catena.2015.02.013.

YAŞAR KORKANÇ, S. Effects of the land use/cover on the surface runoff and soil loss in the Niğde-Akkaya Dam Watershed, Turkey. Catena, v. 163, n. August 2017, p. 233–243, 2018. https://doi.org/10.1016/j.catena.2017.12.023.

YIN, H. et al. Rainfall-runoff modeling using LSTM-based multi-state-vector sequence-to-sequence model. Journal of Hydrology, v. 598, n. October 2020, p. 126378, 2021. https://doi.org/10.1016/j.jhydrol.2021.126378.

YU, Z. et al. Preface: Hydrological processes and water security in a changing world. Proceedings of the International Association of Hydrological Sciences, v. 383, n. 4, p. 3–4, 2020. https://doi.org/10.5194/piahs-383-3-2020.

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2021 Ana Claudia Pereira Carvalho, Reinaldo Lorandi, José Augusto Di Lollo, Eduardo Goulart Collares, Luiz Eduardo Moschini

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...